Syllabus Edition

First teaching 2023

First exams 2025

|

Gravitational Potential Energy (SL IB Physics)

Revision Note

Test Yourself
Ashika

Author

Ashika

Expertise

Physics Project Lead

Gravitational Potential Energy

  • Gravitational potential energy Ep is the energy stored in a mass due to its position in a gravitational field
    • If a mass is lifted up, it will gain Ep (converted from other forms of energy)
    • If a mass falls, it will lose Ep (and be converted to other forms of energy)

  • The equation for gravitational potential energy when close to the surface of the Earth is:

increment E subscript p space equals space m g increment h

  • Where:
    • ΔEp = gravitational potential energy (J)
    • = mass (kg)
    • g = gravitational field strength (9.81 N kg–1)
    • Δh = change in height (m)

2-3-2-ib-sl-and-hl-diag-for-correction

Gravitational potential energy (GPE): The energy an object has when lifted up

  • The potential energy on the Earth’s surface at ground level is taken to be equal to 0
  • This equation is only relevant for energy changes in a uniform gravitational field (such as near the Earth’s surface)
  • A different potential energy is used in the gravitational fields topic, because the field is no longer uniform outside of the Earth's surface

GPE vs Height

  • The two graphs below show how GPE changes with height for a ball being thrown up in the air and when falling down (ignoring air resistance)

GPE graphs, downloadable AS & A Level Physics revision notes

Graphs showing the linear relationship between GPE and height

  • Since the graphs are straight lines, GPE and height are said to have a linear relationship
    • These graphs would be identical for GPE against time instead of height

Worked example

To get to his apartment a man has to climb five flights of stairs.

The height of each flight is 3.7 m and the man has a mass of 74 kg.

What is the approximate gain in the man's gravitational potential energy during the climb?

A.     13 000 J               B.     2700 J               C.     1500 J               D.     12 500 J

WE - GPE answer image, downloadable AS & A Level Physics revision notes

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Ashika

Author: Ashika

Ashika graduated with a first-class Physics degree from Manchester University and, having worked as a software engineer, focused on Physics education, creating engaging content to help students across all levels. Now an experienced GCSE and A Level Physics and Maths tutor, Ashika helps to grow and improve our Physics resources.