Velocity-Time Graphs (Edexcel IGCSE Physics)

Revision Note

Ashika

Author

Ashika

Expertise

Physics Project Lead

Did this video help you?

Velocity-time graphs

  • A velocity time graph, or velocity-time graph, shows how the velocity of a moving object varies with time
    • Velocity-time refers to the fact that velocity is plotted against time on the graph
  • The red line represents an object with increasing velocity
  • The green line represents an object with decreasing velocity

Velocity-time graph

Velocity-Time Graph, downloadable IGCSE & GCSE Physics revision notes

Increasing and decreasing velocity represented on a velocity-time graph

Acceleration on a velocity-time graph

  • Velocity-time graphs also show the following information:
    • Whether the object is moving with a constant acceleration
    • The magnitude of the acceleration

  • A straight line represents constant acceleration (or deceleration)
  • The slope of the line represents the magnitude of acceleration
    • A steep slope means large acceleration
      • The object's speed changes very quickly
    • A gentle slope means small acceleration
      • The object's speed changes very gradually
    • A positive gradient shows increasing velocity
      • The object is accelerating
    • A negative gradient shows decreasing velocity
      • The object is decelerating
    • A flat line means the acceleration is zero
      • The object is moving with a constant velocity

 

Constant acceleration and constant velocity on a velocity-time graph

velocity-time-graphs, IGCSE & GCSE Chemistry revision notes

Flat horizontal lines on a velocity-time graph show periods of constant velocity, and sloping straight line show periods of acceleration

Gradient of a velocity-time graph

How to find acceleration on a velocity-time graph

  • The acceleration of an object can be calculated from the gradient of a velocity-time graph

acceleration space equals space gradient space equals space fraction numerator increment y over denominator increment x end fraction

velocity-time-gradient

How to find the gradient of a velocity-time graph

 

  • increment y is the change in y (velocity) values
  • increment x is the change in x (time) values

Worked example

A cyclist is training for a cycling tournament.

The velocity-time graph below shows the cyclist's motion as they cycle along a flat, straight road.

WE V-T graph Question image, downloadable IGCSE & GCSE Physics revision notes

(a) In which section (A, B, C, D, or E) of the velocity-time graph is the cyclist's acceleration the largest?

(b) Calculate the cyclist's acceleration between 5 and 10 seconds.

 

Answer:

Part (a)

Step 1: Recall that the slope of a velocity-time graph represents the magnitude of acceleration

  • The slope of a velocity-time graph indicates the magnitude of acceleration

    Therefore, the only sections of the graph where the cyclist is accelerating are sections B and D

  • Sections A, C, and E are flat; in other words, the cyclist is moving at a constant velocity (therefore, not accelerating)

Step 2: Identify the section with the steepest slope

  • Section D of the graph has the steepest slope
  • Hence, the largest acceleration is shown in section D

 

Part (b)

Step 1: Recall that the gradient of a velocity-time graph gives the acceleration

  • Calculating the gradient of a slope on a velocity-time graph gives the acceleration for that time period

Step 2: Draw a large gradient triangle at the appropriate section of the graph

  • A gradient triangle is drawn for the time period between 5 and 10 seconds 

velocity-time-graph-we

Step 3: Calculate the size of the gradient and state this as the acceleration

  • The acceleration is given by the gradient, which can be calculated using:

a space equals space fraction numerator increment y over denominator increment x end fraction

a space equals space 5 over 5

a space equals space 1 space straight m divided by straight s squared

  • Therefore, the cyclist accelerated at 1 m/s2 between 5 and 10 seconds

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Ashika

Author: Ashika

Ashika graduated with a first-class Physics degree from Manchester University and, having worked as a software engineer, focused on Physics education, creating engaging content to help students across all levels. Now an experienced GCSE and A Level Physics and Maths tutor, Ashika helps to grow and improve our Physics resources.