Composite Functions (Cambridge (CIE) IGCSE Maths)

Revision Note

Did this video help you?

Composite Functions

What is a composite function?

  • A composite function is a function applied to the output of another function

    • The input goes through the 1st function to become an output

    • This output goes through the 2nd function to become a new output

What notation is used for composite functions?

  • If straight f open parentheses x close parentheses and straight g open parentheses x close parentheses are two functions, then

    • straight g open parentheses straight f open parentheses x close parentheses close parentheses is a composite function

    • It means the input xgoes through function straight f first

      • This gives the output straight f open parentheses x close parentheses

      • Then this output, straight f open parentheses x close parentheses, becomes the input of function straight g, giving straight g open parentheses straight f open parentheses x close parentheses close parentheses

    • gf open parentheses x close parentheses is the shorthand notation used for straight g open parentheses straight f open parentheses x close parentheses close parentheses

      • It means do straight f first, then straight g

      • The order of applying the functions goes from right to left

      • (the letter nearest the bracket goes first)

      • This is often the opposite of what people expect!

    • fg open parentheses x close parentheses means do straight g open parentheses x close parentheses first then straight f open parentheses x close parentheses second

    • ff open parentheses x close parentheses means apply straight f open parentheses x close parentheses twice!

      • This can be written straight f squared open parentheses x close parentheses

      • This does not mean the same as open square brackets straight f open parentheses x close parentheses close square brackets squared

Examiner Tips and Tricks

A good trick in the exam is to write brackets around gf open parentheses x close parentheses to make it straight g open parentheses straight f open parentheses x close parentheses close parentheses, to see that it is "g" of "f(x)".

How do I substitute numbers into composite functions?

  • If you are putting a number into a composite function

    • put the number into the function closest to (x)

    • then make the output of the first function the input of the second function

  • For example, if straight f open parentheses x close parentheses equals 2 x plus 1 and straight g open parentheses x close parentheses equals 1 over x

    • to find gf open parentheses 2 close parentheses:

      • Put the 2 in as the input of straight f first

      • straight f left parenthesis 2 right parenthesis equals 2 open parentheses 2 close parentheses plus 1 equals 5 space

      • Then put 5 in as the input of straight g

      • So gf open parentheses 2 close parentheses equals straight g open parentheses straight f open parentheses 2 close parentheses close parentheses equals straight g open parentheses 5 close parentheses equals 1 fifth

    • to find fg open parentheses 2 close parentheses:

      • Put the 2 in as the input of straight g first

      • straight g open parentheses 2 close parentheses equals 1 half

      • Then put 1 half in as the input of straight f

      • So fg open parentheses 2 close parentheses equals straight f open parentheses straight g open parentheses 2 close parentheses close parentheses equals straight f open parentheses 1 half close parentheses equals 2 open parentheses 1 half close parentheses plus 1 equals 2

    • to find ff open parentheses 2 close parentheses:

      • straight f open parentheses 2 close parentheses equals 2 cross times 2 plus 1 equals 5

      • straight f open parentheses 5 close parentheses equals 2 cross times 5 plus 1 equals 11

      • so ff open parentheses 2 close parentheses equals 11

How do I find composite functions algebraically?

  • If you are using algebra, substitute the whole algebraic expression as your input

    • For example, if straight f left parenthesis x right parenthesis equals 2 x plus 1 and straight g left parenthesis x right parenthesis equals 1 over x

      • fg left parenthesis x right parenthesis equals straight f open parentheses straight g open parentheses x close parentheses close parentheses equals straight f open parentheses 1 over x close parentheses equals 2 cross times open parentheses 1 over x close parentheses plus 1 equals 2 over x plus 1

      • gf left parenthesis x right parenthesis equals straight g open parentheses straight f open parentheses x close parentheses close parentheses equals straight g left parenthesis 2 x plus 1 right parenthesis equals fraction numerator 1 over denominator 2 x plus 1 end fraction

      • ff open parentheses x close parentheses equals straight f open parentheses straight f open parentheses x close parentheses close parentheses equals straight f open parentheses 2 x plus 1 close parentheses equals 2 open parentheses 2 x plus 1 close parentheses plus 1 which simplifies to ff open parentheses x close parentheses equals 4 x plus 3

Worked Example

In this question, straight f open parentheses x close parentheses space equals space 2 x space minus space 1 and straight g open parentheses x close parentheses space equals space open parentheses x space plus space 2 close parentheses squared.

(a) Find  fg open parentheses 4 close parentheses.

"g" is on the inside of the composite function, so apply g first

straight g open parentheses 4 close parentheses equals open parentheses 4 plus 2 close parentheses squared equals 6 squared equals 36

Now apply the function "f" to 36

table row cell space straight f open parentheses 36 close parentheses end cell equals cell 2 open parentheses 36 close parentheses minus 1 end cell row blank equals cell 72 minus 1 end cell end table

bold fg bold left parenthesis bold 4 bold right parenthesis bold equals bold 71

(b) Find  gf open parentheses x close parentheses.

"f" is on the inside of the composite function so substitute the function f(x) into g(x)
It can help to write gf open parentheses x close parentheses equals straight g open parentheses straight f open parentheses x close parentheses close parentheses

 gf stretchy left parenthesis x stretchy right parenthesis equals straight g open parentheses straight f open parentheses x close parentheses close parentheses space equals straight g open parentheses 2 x minus 1 close parentheses equals open parentheses open parentheses 2 x minus 1 close parentheses plus 2 close parentheses squared

Simplify inside the bracket

table row cell gf open parentheses x close parentheses end cell equals cell open parentheses 2 x minus 1 plus 2 close parentheses squared end cell end table

bold gf bold left parenthesis bold italic x bold right parenthesis bold equals bold left parenthesis bold 2 bold italic x bold plus bold 1 bold right parenthesis to the power of bold 2

You do not need to expand the answer

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Amber

Author: Amber

Expertise: Maths

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.