Integrating Trig Functions (Cambridge O Level Additional Maths)

Revision Note

Test yourself
Paul

Author

Paul

Last updated

Integrating Trig Functions

How do I integrate sin, cos and sec^2?

  • The integrals for sine and cosine are

bold space bold integral bold sin bold space bold italic x bold space bold d bold italic x bold equals bold minus bold cos bold space bold italic x bold plus bold italic c

bold space bold integral bold cos bold space bold italic x bold space bold d bold italic x bold equals bold sin bold space bold italic x bold plus bold italic c

wherebold space bold italic c is the constant of integration

  • Also, from the derivative ofspace tan space x

bold space bold integral bold sec to the power of bold 2 bold space bold italic x bold space bold d bold italic x bold equals bold tan bold space bold italic x bold plus bold italic c

  • For the linear functionbold space bold italic a bold italic x bold plus bold italic b, wherespace bold italic a andspace bold italic b are constants,

bold space bold integral bold sin bold space bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold space bold d bold italic x bold equals bold minus bold 1 over bold italic a bold cos bold space bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold plus bold italic c

bold space bold integral bold cos bold space bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold space bold d bold italic x bold equals bold 1 over bold italic a bold sin bold space bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold plus bold italic c

bold space bold integral bold sec to the power of bold 2 bold space bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold space bold d bold italic x bold equals bold 1 over bold italic a bold tan bold left parenthesis bold italic a bold italic x bold plus bold italic b bold right parenthesis bold plus bold italic c

  • For calculus with trigonometric functions angles must be measured in radians

Examiner Tip

  • Remember to add 'c', the constant of integration, for any indefinite integrals 

Worked example

a)
Find, in the formspace straight f left parenthesis x right parenthesis plus c, an expression for each integral
i. space integral cos space x space straight d x
ii. space integral sec squared space stretchy left parenthesis 3 x minus straight pi over 3 stretchy right parenthesis space straight d x
 
i.   This is a result you should be able to recall from memory.
 
space integral cos space x space straight d x space equals space bold sin bold space bold italic x bold space bold plus bold thin space bold italic c
 
ii.   Use the standard result: integral sec to the power of 2 space end exponent open parentheses a x plus b close parentheses space d x space equals fraction numerator space 1 over denominator a end fraction tan open parentheses a x plus b close parentheses space plus space c space.
 
  
b)
A curve has the following equation:
space y equals integral 2 sin open parentheses 2 x plus straight pi over 6 close parentheses space straight d x
The curve passes through the point with coordinates space open parentheses straight pi over 3 comma space square root of 3 close parentheses.
Find an expression for y.
 
Factor out the 2 in front of the sin first, and then use the standard result: integral sin open parentheses a x plus b close parentheses d x equals negative 1 over a cos open parentheses a x plus b close parentheses space plus c space. 
 
y equals 2 integral sin open parentheses 2 x plus straight pi over 6 close parentheses d x
y equals 2 open parentheses negative 1 half cos open parentheses 2 x plus straight pi over 6 close parentheses plus c close parentheses
 
When multiplying the arbitrary constant c, by 2, it is still just an arbitrary constant and so it is still just written as c. 
 
y equals minus cos open parentheses 2 x plus straight pi over 6 close parentheses plus c
 
Substitute in the given coordinate, and evaluate, to find c. 
 
At x equals straight pi over 3 comma space y equals square root of 3
square root of 3 equals negative cos open parentheses fraction numerator 2 straight pi over denominator 3 end fraction plus straight pi over 6 close parentheses plus c
square root of 3 equals negative cos open parentheses fraction numerator 5 straight pi over denominator 6 end fraction close parentheses plus c
square root of 3 equals fraction numerator square root of 3 over denominator 2 end fraction plus c
c equals fraction numerator square root of 3 over denominator 2 end fraction
 
Rewrite the full expression for y.
 

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Paul

Author: Paul

Expertise: Maths

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams – one of the many reasons he is excited to be a member of the SME team.