Introduction to Complex Numbers (Edexcel International AS Further Maths)

Revision Note

Mark Curtis

Written by: Mark Curtis

Reviewed by: Dan Finlay

Cartesian Form of Complex Numbers

What is an imaginary number?

  • Equations like x to the power of 2 space end exponent equals space minus 9 have no real solutions

    • Squaring real numbers always gives a positive value

      • No real number squared could give -9

    • x equals plus-or-minus 3 are real numbers, but neither work

      • They give +9

  • To get round this, mathematicians introduce the imaginary number, straight i, as follows:

    • straight i squared equals negative 1

      • This can be thought of as straight i equals square root of negative 1 end root

  • Rules for surds and indices can be used

    • x to the power of 2 space end exponent equals space minus 9 means x to the power of 2 space end exponent equals space 9 cross times open parentheses negative 1 close parentheses equals 9 straight i squared

      • The imaginary solutions are x equals plus-or-minus 3 straight i

What is a complex number?

  • Complex numbers have both a real part and an imaginary part

    • For example, 3 plus 4 straight i

      • The real part is 3

      • The imaginary part is 4

  • This is called Cartesian form

  • In general, Cartesian form is written using the notation:

    • z equals x plus y straight i

    • Re open parentheses z close parentheses equals x

    • Im open parentheses z close parentheses equals y

  • The letter straight complex numbers stands for all complex numbers

    • z element of straight complex numbers

  • Complex numbers with no imaginary parts are real numbers

    • The real numbers, straight real numbers, are a subset of the complex numbers, straight complex numbers

      • straight real numbers subset of straight complex numbers

  • In Cartesian form z equals x plus y straight i space element of straight complex numbers

    • x element of straight real numbers

    • y element of straight real numbers as y itself takes real values

      • Multiplying it by straight i makes it imaginary: y straight i

  • Complex numbers with no real parts are called imaginary numbers

How do I add or subtract complex numbers?

  • Add or subtract their real parts and imaginary parts separately

    • table row cell left parenthesis 3 plus 4 straight i right parenthesis plus open parentheses 2 plus 8 straight i close parentheses end cell equals cell open parentheses 3 plus 2 close parentheses plus open parentheses 4 plus 8 close parentheses straight i equals 5 plus 12 straight i end cell end table

    • table row cell left parenthesis 3 plus 4 straight i right parenthesis minus open parentheses 2 plus 8 straight i close parentheses end cell equals cell open parentheses 3 minus 2 close parentheses plus open parentheses 4 minus 8 close parentheses straight i equals 1 minus 4 straight i end cell end table

How do I multiply or divide complex numbers by real numbers?

  • Multiply or divide their real parts and imaginary parts separately

    • table row cell 10 left parenthesis 3 plus 4 straight i right parenthesis end cell equals cell 30 plus 40 straight i end cell end table

    • table row cell left parenthesis 3 plus 4 straight i right parenthesis divided by 10 end cell equals cell 0.3 plus 0.4 straight i end cell end table

      • This can also be written table row cell 1 over 10 open parentheses 3 plus 4 straight i close parentheses end cell equals cell 3 over 10 plus 4 over 10 straight i end cell end table

Examiner Tips and Tricks

  • Avoid these handwriting misinterpretations when writing straight i in the exam:

    • 2 square root of 5 straight i can look like 2 square root of 5 straight i end root

      • Alternatives are open parentheses 2 square root of 5 close parentheses straight i or 2 straight i square root of 5

    • 3 over 2 straight i can look like fraction numerator 3 over denominator 2 straight i end fraction

      • An alternative is fraction numerator 3 straight i over denominator 2 end fraction

Worked Example

Two complex numbers are given by z subscript 1 equals p plus 2 straight i and z subscript 2 equals negative 7 plus q straight i, where p and q are real.

Given that z subscript 1 plus 2 z subscript 2 equals 4 minus 8 straight i, find p and q.

Substitute the complex numbers into the left-hand side

open parentheses p plus 2 straight i close parentheses plus 2 open parentheses negative 7 plus q straight i close parentheses

Expand the brackets and collect real and imaginary terms

table row blank equals cell p plus 2 straight i minus 14 plus 2 q straight i end cell row blank equals cell open parentheses straight p minus 14 close parentheses plus open parentheses 2 plus 2 q close parentheses straight i end cell end table

Compare this to the right-hand side
Set the real parts equal to each other and solve

table row cell p minus 14 end cell equals 4 row p equals 18 end table

Set the imaginary parts equal to each other and solve

table row cell 2 plus 2 q end cell equals cell negative 8 end cell row cell 2 q end cell equals cell negative 10 end cell row q equals cell negative 5 end cell end table

p equals 18 and q equals negative 5

Multiplying Complex Numbers

How do I multiply complex numbers?

  • All rules of expanding brackets still work

    • You need to remember that straight i squared equals negative 1

  • For example, open parentheses a plus b straight i close parentheses open parentheses c plus d straight i close parentheses equals a c plus a d straight i plus b c straight i plus b d straight i squared

    • Use straight i squared equals negative 1 in the last term

      • a c plus a d straight i plus b c straight i minus b d

    • Then group real and imaginary parts

      • Factorise out the straight i

      • a c minus b d plus open parentheses a d plus b c close parentheses straight i

  • Note that the difference between two squares becomes

    • open parentheses a plus b straight i close parentheses open parentheses a minus b straight i close parentheses equals a squared minus b squared straight i squared equals a squared plus b squared

How do I find powers of i?

  • Use the fact that straight i squared equals negative 1

    • Below are the first few powers of straight i:

      • straight i to the power of 0 equals 1

      • straight i to the power of 1 equals straight i

      • straight i squared equals negative 1

      • straight i cubed equals negative straight i from straight i squared cross times straight i equals open parentheses negative 1 close parentheses cross times straight i

      • straight i to the power of 4 equals 1 from left parenthesis straight i squared right parenthesis squared equals open parentheses negative 1 close parentheses squared equals 1

      • straight i to the power of 5 equals straight i from straight i to the power of 5 equals left parenthesis straight i squared right parenthesis squared blank cross times straight i equals straight i

    • The pattern above continues

      • straight i to the power of 6 equals negative 1

      • straight i to the power of 7 equals negative straight i

  • Find higher powers of straight i using a base of straight i squared

    • Remember that -1 to an even power is 1 (or to an odd power is -1)

      • straight i to the power of 23 equals open parentheses straight i squared close parentheses to the power of 11 cross times straight i equals open parentheses negative 1 close parentheses to the power of 11 cross times straight i equals blank minus straight i

Examiner Tips and Tricks

Questions that say "show your working clearly" won't accept answers written down from a calculator.

Worked Example

Showing your working clearly, find and simplify:

(a) open parentheses 4 plus straight i close parentheses open parentheses 2 plus 9 straight i close parentheses

Expand the brackets

equals 4 cross times 2 plus 4 cross times 9 straight i plus straight i cross times 2 plus straight i cross times 9 straight i
equals 8 plus 36 straight i plus 2 straight i plus 9 straight i squared

Collect the imaginary parts
Use that straight i squared equals negative 1 then collect the real parts

table row blank equals cell 8 plus 38 straight i plus 9 cross times open parentheses negative 1 close parentheses end cell row blank equals cell 8 plus 38 straight i minus 9 end cell end table

negative 1 plus 38 straight i

(b) open parentheses 3 minus 4 straight i close parentheses squared

Write using double brackets then expand

equals open parentheses 3 minus 4 straight i close parentheses open parentheses 3 minus 4 straight i close parentheses
equals 9 minus 12 straight i minus 12 straight i plus 16 straight i squared

Collect the imaginary parts
Use that straight i squared equals negative 1 then collect the real parts

table row blank equals cell 9 minus 24 straight i plus 16 cross times open parentheses negative 1 close parentheses end cell row blank equals cell 9 minus 24 straight i minus 16 end cell end table

table row blank blank cell negative 7 minus 24 straight i end cell end table

(c) open parentheses negative 2 straight i close parentheses to the power of 11

Use index laws to move the power onto the individual terms

open parentheses negative 2 close parentheses to the power of 11 cross times straight i to the power of 11

Work out open parentheses negative 2 close parentheses to the power of 11

open parentheses negative 2 close parentheses to the power of 11 equals negative 2048

Work out straight i to the power of 11
It helps to write it in terms of straight i to the power of 10 then straight i squared
Use straight i squared equals negative 1

table row cell straight i to the power of 11 end cell equals cell straight i to the power of 10 cross times straight i end cell row blank equals cell open parentheses straight i squared close parentheses to the power of 5 cross times straight i end cell row blank equals cell open parentheses negative 1 close parentheses to the power of 5 cross times straight i end cell row blank equals cell negative 1 cross times straight i end cell row blank equals cell negative straight i end cell end table

Multiply both parts together
Two minus signs make a plus

negative 2048 cross times open parentheses negative straight i close parentheses

2048 straight i

Complex Conjugates & Division

What is a complex conjugate?

  • If z equals x plus y straight i then the complex conjugate of z is z asterisk times equals x minus y straight i

    • The sign of the imaginary part changes

  • Note that

    • z plus z asterisk times is always real

      • since x plus y straight i plus x minus y straight i equals 2 x

    • z minus z asterisk times is always imaginary

      • since x plus y straight i minus open parentheses x minus y straight i close parentheses equals 2 y straight i

    • z z asterisk times is always real (and non-negative)

      • since open parentheses x plus y straight i close parentheses open parentheses x minus y straight i close parentheses equals x squared minus y squared straight i squared equals x squared plus y squared

      • z z asterisk times equals z asterisk times z

How do I divide complex numbers?

  • To divide z subscript 1 by z subscript 2, multiply top and bottom of z subscript 1 over z subscript 2 by z subscript 2 asterisk times

    • z subscript 2 asterisk times is the complex conjugate of the denominator

  • This makes the denominator a real number

    • which allows you to write the final answer in Cartesian form, x plus y straight i

  • The process is called realising the denominator

    • It is a very similar to rationalising the denominator with surds

  • For example, to work out fraction numerator 50 plus 75 straight i over denominator 3 plus 4 straight i end fraction

    • calculate fraction numerator open parentheses 50 plus 75 straight i close parentheses over denominator open parentheses 3 plus 4 straight i close parentheses end fraction cross times fraction numerator open parentheses 3 minus 4 straight i close parentheses over denominator open parentheses 3 minus 4 straight i close parentheses end fraction

      • It helps to write the brackets in

    • then expand and simplify

Examiner Tips and Tricks

To check your answer in an exam, multiply it by the denominator and see if you get the numerator.

Worked Example

Let z subscript 1 equals 1 plus 7 straight i and z subscript 2 equals 3 minus straight i.

Find and simplify z subscript 1 over z subscript 2, giving your answer in the form x plus y straight i where x and y are real numbers.

Find the complex conjugate of the denominator

z subscript 2 asterisk times equals 3 plus straight i

Multiply the top and bottom of z subscript 1 over z subscript 2 by z subscript 2 asterisk times

fraction numerator open parentheses 1 plus 7 straight i close parentheses over denominator open parentheses 3 minus straight i close parentheses end fraction cross times fraction numerator open parentheses 3 plus straight i close parentheses over denominator open parentheses 3 plus straight i close parentheses end fraction

Write as one single fraction then expand top and bottom separately

fraction numerator open parentheses 1 plus 7 straight i close parentheses open parentheses 3 plus straight i close parentheses over denominator open parentheses 3 minus straight i close parentheses open parentheses 3 plus straight i close parentheses end fraction equals fraction numerator 3 plus straight i plus 21 straight i plus 7 straight i squared over denominator 9 minus straight i squared end fraction

Use that straight i squared equals negative 1then collect real and imaginary parts

table row blank equals cell fraction numerator 3 plus straight i plus 21 straight i minus 7 over denominator 9 minus open parentheses negative 1 close parentheses end fraction end cell row blank equals cell fraction numerator negative 4 plus 22 straight i over denominator 10 end fraction end cell end table

To give your answer in the form x plus y straight i, split the fraction then simplify

negative 4 over 10 plus 22 over 10 straight i

negative 2 over 5 plus 11 over 5 straight i

negative 0.4 plus 2.2 straight i is also accepted

Last updated:

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Mark Curtis

Author: Mark Curtis

Expertise: Maths

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.