Displacement-Time graph for an oscillator
- The displacement of an object in simple harmonic motion can be represented by a graph of displacement against time
- All undamped SHM graphs are represented by periodic functions
- This means they can all be described by sine and cosine curves
- Key features of the displacement-time graph:
- The amplitude of oscillations A can be found from the maximum value of x
- The time period of oscillations T can be found from reading the time taken for one full cycle
- The graph might not always start at 0
- If the oscillations starts at the positive or negative amplitude, the displacement will be at its maximum
Examiner Tip
This graph might not look identical to what is in your textbook, depending on where the object starts oscillating from at t = 0 (on either side of the equilibrium, or at the equilibrium). However, if there is no damping, they will all always be a general sine or cosine curve.