Born-Haber Calculations (Oxford AQA International A Level Chemistry)

Revision Note

Philippa Platt

Written by: Philippa Platt

Reviewed by: Stewart Hird

Updated on

Born-Haber Calculations

  • Once a Born-Haber cycle has been constructed, lattice energy (ΔHlatt) can be calculated by applying Hess’s law and rearranging:

ΔHfꝊ = ΔHatꝊ + ΔHatꝊ + ΔHie+ ΔHea + ΔHlatt

  • If we simplify this into three terms, this makes the equation easier to see:

    • ΔHlattθ

    • ΔHfθ

    • ΔH1θ (the sum of all of the various enthalpy changes necessary to convert the elements in their standard states to gaseous ions)

  • The simplified equation becomes:

ΔHfꝊ = ΔH1 + ΔHlatt

  • So, if we rearrange to calculate the lattice energy, the equation becomes

ΔHlattꝊ = ΔHfꝊ  - ΔH1

  • When calculating the ΔHlatt, all other necessary values will be given in the question

  • A Born-Haber cycle could be used to calculate any stage in the cycle

  • For example, you could be given the lattice energy and asked to calculate the enthalpy change of formation of the ionic compound

    • Work out the direct and indirect route of the cycle

      • The stage that you are being asked to calculate will always be the direct route

    • Write out the equation in terms of enthalpy changes and rearrange if necessary to calculate the required value

  • Remember:

    • To include all the required enthalpies

    • Sometimes an enthalpy value may need to be doubled or halved, depending on the ionic solid involved

  • For example, magnesium chloride

    • Magnesium has two ionisation energies:

      • First ionisation energy creating the Mg+ ion

      • Second ionisation energy creating the Mg2+ ion

    • There are two chlorine atoms required to form magnesium chloride

      • Therefore, you are adding 2 moles of electrons to 2 moles of chlorine atoms, to form 2 moles of Cl- ions

      • This means that the value for the electron affinity of chlorine is doubled

Worked Example

Using the data below, calculate the ΔHlattθ of magnesium oxide, MgO.

Enthalpy change

Enthalpy change / kJ mol-1

ΔHatMg

+148

ΔHatO

+248

ΔH1ieMg

+736

ΔH2ieMg

+1450

ΔH1eaO

-142

ΔH2eaO

+770

ΔHf MgO

-602

Answer:

  • Step 1: The corresponding Born-Haber cycle is:

Chemical Energetics - Constructing a Born-Haber cycle for MgO Cycle 2, downloadable AS & A Level Chemistry revision notes
  • Step 2: Applying Hess’ law, the lattice energy of MgO is:

    • ΔHlatt = ΔHf - ΔH1

    • ΔHlatt  = ΔHf - [( ΔHatMg) + (ΔHatO) + (ΔH1ieMg) + (ΔH2ieMg) + (ΔH1eaO) + (ΔH2eaO)]

  • Step 3: Substitute in the numbers:

    • ΔHlatt = (-602) - [(+148) + (+248) + (+736) + (+1450) + (-142) + (+770)]

    • ΔHlatt = -3812 kJ mol-1

Worked Example

Using the data below, calculate the ΔHlatt of potassium chloride, KCl.

Enthalpy change

Enthalpy change / kJ mol-1

ΔHatK

+90

ΔHatCl

+122

ΔHieK

+418

ΔHeaCl

-349

ΔHf KCl

-437

Answer:

  • Step 1: The corresponding Born-Haber cycle is:

Chemical Energetics - Constructing a Born-Haber cycle for KCl Cycle 1, downloadable AS & A Level Chemistry revision notes
  • Step 2: Applying Hess’ law, the lattice energy of KCl is:

    • ΔHlatt = ΔHf - ΔH1

    • ΔHlatt = ΔHf - [(ΔHatK) + (ΔHatCl) + (ΔHie K) + (ΔHea Cl)]

  • Step 3: Substitute in the numbers:

    • ΔHlatt = (-437) - [(+90) + (+122) + (+418) + (-349)] = –718 kJ mol-1

Comparing Lattice Enthalpies

  • It is possible to calculate a theoretical value for the lattice enthalpy of an ionic solid

  • To do this you need to know:

    • The geometry of the ionic solid

    • The charge on the ions

    • The distance between the ions

Ionic lattice of sodium chloride

Ionic Lattice Structure - NaCl, downloadable IGCSE & GCSE Chemistry revision notes
The ionic model for sodium chloride
  • This has been calculated for a number of ionic solids and allows a comparison between theoretical lattice enthalpies and experimental lattice enthalpies obtained from Born-Haber cycles

  • The calculation of the theoretical value assumes that the substance is a highly ionic compound with only electrostatic attraction between cations and anions

Table comparing theoretical and experimental lattice enthalpies

Substance

Theoretical lattice enthalpy / kJ mol-1

Experimental lattice enthalpy / kJ mol-1

% difference

NaCl

769

790

2.7

ZnS

3427

3615

5.5

  • You can see from the table that there is quite close agreement between the two values for the lattice enthalpy of sodium chloride

  • The difference between theoretical and experimental lattice enthalpy increases for zinc sulfide

  • This suggests that the bonding is not purely ionic and some covalent character is present

  • This can be explained as follows:

    • Zn2+ is a smaller ion with a greater charge than Na+

    • Zn2+ ions attract electron density towards themselves

    • This distorts the electron cloud and makes the bonding slightly covalent

    • S2- ions are larger ions than chloride ions Cl- with a greater negative charge

    • The electron cloud around S2- is more easily distorted than in chloride ions leading to further covalent character

Distortion of electron clouds

Covalent Character in ionic compounds, downloadable AS & A Level Chemistry revision notes
Covalent character in ionic compounds
  • As you move left to right across the period table, the lattices become less ionic and more covalent leading to a discrepancy in the lattice enthalpy values

  • The result of these analyses provides strong evidence that supports the ionic model for some compounds like sodium chloride

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Philippa Platt

Author: Philippa Platt

Expertise: Chemistry

Philippa has worked as a GCSE and A level chemistry teacher and tutor for over thirteen years. She studied chemistry and sport science at Loughborough University graduating in 2007 having also completed her PGCE in science. Throughout her time as a teacher she was incharge of a boarding house for five years and coached many teams in a variety of sports. When not producing resources with the chemistry team, Philippa enjoys being active outside with her young family and is a very keen gardener

Stewart Hird

Author: Stewart Hird

Expertise: Chemistry Lead

Stewart has been an enthusiastic GCSE, IGCSE, A Level and IB teacher for more than 30 years in the UK as well as overseas, and has also been an examiner for IB and A Level. As a long-standing Head of Science, Stewart brings a wealth of experience to creating Topic Questions and revision materials for Save My Exams. Stewart specialises in Chemistry, but has also taught Physics and Environmental Systems and Societies.