Transition Metals (Edexcel International A Level Chemistry)

Revision Note

Sonny

Author

Sonny

Last updated

Transition Metals - Electronic Configurations

  • Transition metals are elements with an incomplete d-subshell that can form at least one stable ion with an incomplete d-subshell
  • This definition distinguishes them from d-block elements, because scandium and zinc do not fit the definition
    • Scandium only forms the ion Sc3+, configuration [Ar] 3d0
    • Zinc only forms the ion Zn2+, configuration [Ar] 3d10

  • The elements of the first transition series are therefore titanium to copper

6.2.1 Transition elements and d-block elements, downloadable AS & A Level Chemistry revision notes

The transition elements and the d-block elements

Electron Configuration

  • The full electronic configuration of the first d-series transition metals is shown in the table below
  • Following the Aufbau Principle electrons occupy the lowest energy subshells first
  • The 4s overlaps with the 3d subshell so the 4s is filled first
  • Remember that you can abbreviate the first five subshells, 1s-3p, as [Ar] representing the configuration of argon( known as the argon core)

Table showing the Electronic Configuration of the First d-series Transition Elements

Chemistry of Transition Elements - Electronic configuration of transition elements table, downloadable AS & A Level Chemistry revision notes

  • From AS Chemistry you should recall two exceptions to the Aufbau Principle, chromium and copper
  • In both cases an electron is promoted from the 4s to the 3d to achieve a half full and full d-subshell, respectively
  • Chromium and copper have the following electron configurations, which are different to what you may expect:
    • Cr is [Ar] 3d5 4s1 not [Ar] 3d4 4s2
    • Cu is [Ar] 3d10 4snot [Ar] 3d9 4s2

  • This is because the [Ar] 3d5 4s1 and [Ar] 3d10 4sconfigurations are energetically more stable

Worked example

Writing electronic configuration of transition element ions

State the full electronic configuration of the manganese(III) ion

Answer

Step 1: Write out the electron configuration of the atom first:

Mn atomic number = 25

1s22s22p63s23p64s23d5

2 + 2 + 6 + 2 + 6 + 2 + 5 = 25 electrons

Step 2: Subtract the appropriate number of electrons starting from the 4s subshell

Mn(III) = 22 electrons

1s22s22p63s23p63d4

General properties

  • Although the transition elements are metals, they have some properties unlike those of other metals on the periodic table, such as:
    • Variable oxidation states
    • Form complex ions
    • Form coloured compounds
    • Behave as catalysts

Oxidation Number

  • Like other metals on the periodic table, the transition elements will lose electrons to form positively charged ions
  • However, unlike other metals, transition elements can form more than one positive ion
    • They are said to have variable oxidation states
  • Because of this, Roman numerals are used to indicate the oxidation state on the metal ion
    • For example, the metal sodium (Na) will only form Na+ ions (no Roman numerals are needed, as the ion formed by Na will always have an oxidation state of +1)
    • The transition metal iron (Fe) can form Fe2+ (Fe(II)) and Fe3+ (Fe(III)) ions
  • When transition elements forms ions they lose electrons from the 4s subshell first
  • This is because when the orbitals are occupied, the repulsion between electrons pushes the 4s into a higher energy state so that it now becomes slightly higher in energy than the 3d subshell
    • The 4s is now the outer shell and loses electrons first
  • The loss of the 4s electrons means that +2 is a common oxidation state in transition metals
  • The reason why the transition metals have variable oxidation states all comes down to energy

Table showing the Common Oxidation States of Transition Elements

Oxidation states of transition elements table, downloadable AS & A Level Chemistry revision notes

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Sonny

Author: Sonny

Expertise: Chemistry

Sonny graduated from Imperial College London with a first-class degree in Biomedical Engineering. Turning from engineering to education, he has now been a science tutor working in the UK for several years. Sonny enjoys sharing his passion for science and producing engaging educational materials that help students reach their goals.