Velocity-Time Graphs (Edexcel IGCSE Physics (Modular))
Revision Note
Velocity-time graphs
A velocity time graph, or velocity-time graph, shows how the velocity of a moving object varies with time
Velocity-time refers to the fact that velocity is plotted against time on the graph
The red line represents an object with increasing velocity
The green line represents an object with decreasing velocity
Velocity-time graph
Increasing and decreasing velocity represented on a velocity-time graph
Acceleration on a velocity-time graph
Velocity-time graphs also show the following information:
Whether the object is moving with a constant acceleration
The magnitude of the acceleration
A straight line represents constant acceleration (or deceleration)
The slope of the line represents the magnitude of acceleration
A steep slope means large acceleration
The object's speed changes very quickly
A gentle slope means small acceleration
The object's speed changes very gradually
A positive gradient shows increasing velocity
The object is accelerating
A negative gradient shows decreasing velocity
The object is decelerating
A flat line means the acceleration is zero
The object is moving with a constant velocity
Constant acceleration and constant velocity on a velocity-time graph
Flat horizontal lines on a velocity-time graph show periods of constant velocity, and sloping straight lines show periods of acceleration
Gradient of a velocity-time graph
How to find acceleration on a velocity-time graph
The acceleration of an object can be calculated from the gradient of a velocity-time graph
How to find the gradient of a velocity-time graph
is the change in (velocity) values
is the change in (time) values
Worked Example
A cyclist is training for a cycling tournament.
The velocity-time graph below shows the cyclist's motion as they cycle along a flat, straight road.
(a) In which section (A, B, C, D, or E) of the velocity-time graph is the cyclist's acceleration the largest?
(b) Calculate the cyclist's acceleration between 5 and 10 seconds.
Answer:
Part (a)
Step 1: Recall that the slope of a velocity-time graph represents the magnitude of acceleration
The slope of a velocity-time graph indicates the magnitude of acceleration
Therefore, the only sections of the graph where the cyclist is accelerating are sections B and D
Sections A, C, and E are flat; in other words, the cyclist is moving at a constant velocity (therefore, not accelerating)
Step 2: Identify the section with the steepest slope
Section D of the graph has the steepest slope
Hence, the largest acceleration is shown in section D
Part (b)
Step 1: Recall that the gradient of a velocity-time graph gives the acceleration
Calculating the gradient of a slope on a velocity-time graph gives the acceleration for that time period
Step 2: Draw a large gradient triangle at the appropriate section of the graph
A gradient triangle is drawn for the time period between 5 and 10 seconds
Step 3: Calculate the size of the gradient and state this as the acceleration
The acceleration is given by the gradient, which can be calculated using:
Therefore, the cyclist accelerated at 1 m/s2 between 5 and 10 seconds
Examiner Tips and Tricks
Use the entire slope, where possible, to calculate the gradient. Examiners tend to award credit if they see a large gradient triangle used.
Remember to actually draw the lines directly on the graph itself, particularly when the question asks you to use the graph to calculate the acceleration.
You've read 0 of your 5 free revision notes this week
Sign up now. It’s free!
Did this page help you?