Finding Vector Paths (Cambridge (CIE) IGCSE Maths) : Revision Note

Jamie Wood

Written by: Jamie Wood

Reviewed by: Dan Finlay

Updated on

Did this video help you?

Finding Vector Paths

How do I find the vector between two points?

  • A vector path is a path of vectors taking you from a start point to an end point

  • The following grid is made up entirely of parallelograms

    • The vectors a and b defined as marked in the diagram:

      • Any vector that goes horizontally to the right along a side of a parallelogram will be equal to a

      • Any vector that goes up diagonally to the right along a side of a parallelogram will be equal to b

Vectors on a grid of parallelograms
  • To find the vector between two points

    • Count how many times you need to go horizontally to the right

      • This will tell you how many a's are in your answer

    • Count how many times you need to go up diagonally to the right

      • This will tell you how many b's are in your answer

    • Add the a's and b's together

      • E.g. stack A R with rightwards arrow on top equals 2 bold a plus 3 bold b

  • You will have to put a negative in front of the vector if it goes in the opposite direction

    • -a is one length horizontally to the left

    • -b is one length down diagonally to the left

      • E.g. stack F B with rightwards arrow on top equals negative bold b plus bold a or stack F B with rightwards arrow on top equals bold a minus bold b

      • Likewise, stack B F with rightwards arrow on top equals negative stack F B with rightwards arrow on top equals negative open parentheses negative bold b plus bold a close parentheses equals bold b minus bold a

Vector paths on a grid
  • It is possible to describe any vector that goes from one point to another in the above diagram in terms of a and b

Examiner Tips and Tricks

  • Mark schemes will accept different correct paths, as long as the final answer is fully simplified

  • Check for symmetries in the diagram to see if the vectors given can be used anywhere else

Worked Example

The following diagram consists of a grid of identical parallelograms.

Vectors a and b are defined by bold a space equals space stack A B with rightwards arrow on top and bold b bold space equals space stack A F with rightwards arrow on top.

Vector parallelogram grid with vectors a and b shown.

Write the following vectors in terms of a and b.

a) stack A E with rightwards arrow on top

To get from A to E we need to follow vector a four times to the right 

table row cell stack A E with rightwards arrow on top space end cell equals cell space stack A B with rightwards arrow on top space plus thin space stack B C with rightwards arrow on top space plus space stack C D with rightwards arrow on top space plus space stack D E with rightwards arrow on top end cell row blank equals cell space bold a space plus bold space bold a space space plus space bold a space plus space bold a end cell end table

stack bold italic A bold italic E with bold rightwards arrow on top bold equals bold 4 bold a 

b) stack G T with rightwards arrow on top

There are many ways to get from G to T
One option is to go from to (b twice), and then from to (a three times) 

table row cell stack G T with rightwards arrow on top space end cell equals cell space stack G L with rightwards arrow on top space plus thin space stack L Q with rightwards arrow on top space plus space stack Q R with rightwards arrow on top space plus space stack R S with rightwards arrow on top space plus space stack S T with rightwards arrow on top end cell row blank equals cell bold italic b space plus space bold italic b space plus space bold italic a space plus space bold italic a space plus space bold italic a end cell end table

stack bold italic G bold italic T with bold rightwards arrow on top bold equals bold 3 bold a bold plus bold 2 bold b

c) stack E K with rightwards arrow on top

There are many ways to get from E to K
One option is to go fromto O (b twice), and then from O to ( -a four times)

table row cell stack E K with rightwards arrow on top space end cell equals cell space stack E J with rightwards arrow on top space plus thin space stack J O with rightwards arrow on top space plus space stack O N with rightwards arrow on top space plus space stack N M with rightwards arrow on top space plus space stack M L with rightwards arrow on top space plus space stack L K with rightwards arrow on top space space end cell row blank equals cell bold b space plus space bold b space minus space bold a space minus space bold a space minus space bold a bold space bold minus bold space bold a end cell end table

stack bold italic E bold italic K with bold rightwards arrow on top bold equals bold 2 bold italic b bold minus bold 4 bold italic a

negative 4 straight a plus 2 straight b is also acceptable

👀 You've read 1 of your 5 free revision notes this week
An illustration of students holding their exam resultsUnlock more revision notes. It's free!

By signing up you agree to our Terms and Privacy Policy.

Already have an account? Log in

Did this page help you?

Jamie Wood

Author: Jamie Wood

Expertise: Maths Content Creator

Jamie graduated in 2014 from the University of Bristol with a degree in Electronic and Communications Engineering. He has worked as a teacher for 8 years, in secondary schools and in further education; teaching GCSE and A Level. He is passionate about helping students fulfil their potential through easy-to-use resources and high-quality questions and solutions.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Download notes on Finding Vector Paths