Syllabus Edition

First teaching 2023

First exams 2025

|

Trigonometric Graphs (CIE IGCSE Maths: Extended)

Revision Note

Did this video help you?

Drawing Trig Graphs

Why do we need to know what trig graphs look like?

  • Trigonometric graphs (trig graphs) are used in various applications of mathematics
    • for example, the oscillating nature can be used to model how a pendulum swings or tide heights

How do we draw trig graphs?

  • As with other graphs, being familiar with the general style of trigonometric graphs will help you sketch them quickly and you can then use them to find values or angles alongside, or instead of, your calculator
  • All trigonometric graphs follow a pattern – a “starting point” and then “something happens every 90°”

  • y equals sin space x
  • Starts at (0,0)
  • Every 90° it cycles through 1, 0, -1, 0, ...

y-equals-sinx

  • y equals cos space x
  • Starts at (0, 1)
  • Every 90° it cycles through 0, -1, 0, 1, ...

y-equals-cosx

  • y equals tan space x
  • Starts at (0, 0)
  • Every 90° it is either 0 or an asymptote
    • An asymptote is a line that a graph gets ever closer to, without ever crossing or touching it

y-equals-tanx

Worked example

On the axes provided, sketch the graph of y equals sin space x degree for 0 less or equal than x less or equal than 360.

Mark key values on the axes provided; 1, 0 and −1 on the y-axis and 0, 90, 180, 270 and 360 on the x-axis. Try to space them evenly apart

IcJiYEqM_2-14-trig-graphs1

For y equals sin space x degree, the key knowledge is that it starts at (0, 0) then every 90° it cycles though 1, 0 , −1, 0, ... so mark these points on the axes

Finally, join the points with a smooth line. It is best practice to label the curve with its equation

5_-KJTZ8_2-14-trig-graphs2

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Daniel I

Author: Daniel I

Expertise: Maths

Daniel has taught maths for over 10 years in a variety of settings, covering GCSE, IGCSE, A-level and IB. The more he taught maths, the more he appreciated its beauty. He loves breaking tricky topics down into a way they can be easily understood by students, and creating resources that help to do this.