Solving Trig Equations
You can use the symmetry of trig graphs to find multiple solutions to a trig equation
How are trigonometric equations of the form sin x = k solved?
- The solutions to the equation sin x = 0.5 in the range 0° < x < 360° are x = 30° and x = 150°
- If you like, check on a calculator that both sin(30) and sin(150) give 0.5
- The first solution comes from your calculator (by taking inverse sin of both sides)
- x = sin-1(0.5) = 30°
- The second solution comes from the symmetry of the graph y = sin x between 0° and 360°
- Sketch the graph
- Draw a vertical line from x = 30° to the curve, then horizontally across to another point on the curve, then vertically back to the x-axis again
- By the symmetry of the curve, the new value of x is 180° - 30° = 150°
- In general, if x° is an acute angle that solves sin x = k, then 180° - x° is the obtuse angle that solves the same equation
- If the calculator gives x as a negative value, continue drawing the curve to the left of the x-axis to help
How are trigonometric equations of the form cos x = k solved?
- The solutions to the equation cos x = 0.5 in the range 0° < x < 360° are x = 60° and x = 300°
- If you like, check on a calculator that both cos(60) and cos(300) give 0.5
- The first solution comes from your calculator (by taking inverse cos of both sides)
- x = cos-1(0.5) = 60°
- The second solution comes from the symmetry of the graph y = cos x between 0° and 360°
- Sketch the graph
- Draw a vertical line from x = 60° to the curve, then horizontally across to another point on the curve, then vertically back to the x-axis again
- By the symmetry of the curve, the new value of x is 360° - 60° = 300°
- In general, if x° is an angle that solves cos x = k, then 360° - x° is another angle that solves the same equation
- If the calculator gives x as a negative value, continue drawing the curve to the left of the x-axis to help
How are trigonometric equations of the form tan x = k solved?
- The solutions to the equation tan x = 1 in the range 0° < x < 360° are x = 45° and x = 225°
- Check on a calculator that both tan(45) and tan(225) give 1
- The first solution comes from your calculator (by taking inverse tan of both sides)
- x = tan-1(1) = 45°
- The second solution comes from the symmetry of the graph y = tan x between 0° and 360°
- Sketch the graph
- Draw a vertical line from x = 45° to the curve, then horizontally across to another point on the curve (a different “branch” of tan x), then vertically back to the x-axis again
- The new value of x is 45° + 180° = 225° as the next “branch” of tan x is shifted 180° to the right
- In general, if x° is an angle that solves tan x = k, then x° + 180° is another angle that solve the same equation
- If the calculator gives x as a negative value, continue drawing the curve to the left of the x-axis to help
Examiner Tip
- Use a calculator to check your solutions by substituting them into the original equation
- For example, 60° and 330° are incorrect solutions of cos x = 0.5, as cos(330) on a calculator is not equal to 0.5
- Make sure you know your exact trig values as this could come up on the non-calculator paper!
Worked example
Solve sin x = 0.25 in the range 0° < x < 360°, giving your answers correct to 1 decimal place
Use a calculator to find the first solution (by taking inverse sin of both sides)
x = sin-1(0.25) = 14.4775… = 14.48° to 2 dp
Sketch the graph of y = sin x and mark on (roughly) where x = 14.48 and y = 0.25 would be
Draw a vertical line up to the curve, then horizontally across to the next point on the curve, then vertically back down to the x-axis
Find this value using the symmetry of the curve (by taking 14.48 away from 180)
180° – 14.48° = 165.52°
Give both answers correct to 1 decimal place
x = 14.5° or x = 165.5°