Syllabus Edition

First teaching 2021

Last exams 2024

|

Multiplying & Dividing Fractions (CIE IGCSE Maths: Core)

Revision Note

Test yourself

Did this video help you?

Multiplying Fractions

Dealing with mixed numbers

  • Always turn mixed numbers into top heavy fractions before multiplying

Multiplying fractions

  • Cancel any numbers on the tops of the fractions with numbers on the bottoms of the fractions (either fraction)
  • Multiply the tops
  • Multiply the bottoms
  • Cancel again if possible
  • Turn top heavy fractions back into mixed numbers (if necessary / asked for)

Worked example

Find 4 over 15 cross times 25 over 11 

 

The 15 and 25 can be cancelled before multiplying (to make the next step easier)
 

fraction numerator 4 over denominator 5 cross times 3 end fraction cross times fraction numerator 5 cross times 5 over denominator 11 end fraction equals fraction numerator 4 over denominator up diagonal strike 5 cross times 3 end fraction cross times fraction numerator up diagonal strike 5 cross times 5 over denominator 11 end fraction equals 4 over 3 cross times 5 over 11
 

Multiply the numerators together and the denominators together
 

fraction numerator 4 cross times 5 over denominator 3 cross times 11 end fraction
 

There is no further cancelling that can be done

bold 20 over bold 33

Dividing Fractions

Dealing with mixed numbers

  • Always turn mixed numbers into top heavy fractions before dividing

Dividing fractions

  • Never try to divide fractions
  • Instead “flip’n’times” (flip the second fraction and change ÷ into ×)
  • So divided by fraction numerator space a over denominator b end fraction becomes  cross times fraction numerator space b over denominator a end fraction (flipping a fraction creates a reciprocal fraction)
  • Then multiply the fractions (multiply tops and multiply bottoms)
  • Cancel the final answer (if possible)

Worked example

Divide 3 1 fourth by 3 over 8, giving your answer as a mixed number

Rewrite 3 1 fourth as an improper fraction

3 1 fourth equals 12 over 4 plus 1 fourth equals 13 over 4

Turn the division into a multiplication, using the fact that dividing by a fraction is the same as multiplying by its reciprocal

13 over 4 divided by 3 over 8 equals 13 over 4 cross times 8 over 3

Multiply the fractions

13 over 4 cross times 8 over 3 equals fraction numerator 13 cross times 8 over denominator 4 cross times 3 end fraction equals 104 over 12

Simplify the fraction, by dividing the numerator and denominator by 4

104 over 12 equals 26 over 3

Rewrite as a mixed number

26 over 3 equals 24 over 3 plus 2 over 3 equals 8 2 over 3

bold 8 bold 2 over bold 3

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Mark

Author: Mark

Expertise: Maths

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.