0Still learning
Know0
Describe how to find from a Venn diagram that shows sets and .
E.g. find from the Venn diagram.
is the probability of being in set .
This is the number inside the full circle of set divided by the total number of the whole Venn diagram, e.g. .
Describe how to find from a Venn diagram that shows sets and .
E.g. find from the Venn diagram.
is the probability of being in the intersection of set and set .
This is the value inside the overlapping region of set and set divided by the total number of the whole Venn diagram, e.g. .
True or False?
If and are mutually exclusive, then .
True.
If and are mutually exclusive, then .
On a Venn diagram, if and are mutually exclusive then their circles do not overlap (they cannot both happen at the same time).
This makes being in the intersection impossible, so .
Enjoying Flashcards?
Tell us what you think
Describe how to find from a Venn diagram that shows sets and .
E.g. find from the Venn diagram.
is the probability of being in set .
This is the number inside the full circle of set divided by the total number of the whole Venn diagram, e.g. .
Describe how to find from a Venn diagram that shows sets and .
E.g. find from the Venn diagram.
is the probability of being in the intersection of set and set .
This is the value inside the overlapping region of set and set divided by the total number of the whole Venn diagram, e.g. .
True or False?
If and are mutually exclusive, then .
True.
If and are mutually exclusive, then .
On a Venn diagram, if and are mutually exclusive then their circles do not overlap (they cannot both happen at the same time).
This makes being in the intersection impossible, so .
True or False?
To find you need to double-count the numbers in the intersection (overlap) as they occur twice.
False.
To find you do not double-count the numbers in the intersection , you just count them once.
Describe which region on a Venn diagram is required to calculate .
E.g. find from the Venn diagram.
The region required to calculate is the one that is the overlap of all three sets , and . E.g. .
True or False?
On a Venn diagram showing sets and , the region required to calculate is the part of set that does not overlap .
False.
On a Venn diagram showing sets and , the region required to calculate is anything that is outside the circle of , e.g.
On a Venn diagram showing sets and , explain how to calculate .
E.g. find from the Venn diagram.
is a conditional probability meaning the probability of being in , given that you are in . Therefore the probability is out of set only.
The only part of set in set is , so divide the number in by the total number in , e.g. .
True or False?
To find the probability of A and B using a probability tree diagram, you add the probabilities on the branches for A and B.
False.
To find the probability of A and B using a probability tree diagram, you do not add the probabilities on the branches for A and B.
To find the probability of A and B, you multiply along the branches.
True or False?
The probabilities on all of the branches in a probability tree diagram should add up to 1.
False.
The probabilities on all of the branches in a probability tree diagram should not add up to 1.
The probabilities on any set of branches (usually a pair) should add up to 1.
True or False?
The sum of the probabilities of all of the final outcomes on a probability tree diagram should be equal to 1.
True.
The sum of the probabilities of all of the final outcomes on a probability tree diagram should be equal to 1.
A tree diagram is used to represent two events, A and B, where each event has three possible outcomes, 1, 2 and 3.
How many possible final outcomes are there?
For a tree diagram used to represent two events, where each events has three possible outcomes, there are nine possible final outcomes (32 = 9).
A tree diagram is used to represent three tennis matches, where each event has two possible outcomes: player A winning or player B winning.
How many possible final outcomes are there?
A tree diagram is used to represent three tennis matches, where each event has two possible outcomes: player A winning or player B winning.
There are eight possible final outcomes (23 = 8).
The eight outcomes are AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB.
Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7
Topic 8
Topic 9
Topic 10
Topic 11
Topic 12
Topic 13
Topic 14
Topic 15
Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7
Topic 8
Topic 9
Topic 10
Topic 11
Topic 12
Topic 13
Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7
Topic 8
Topic 9
Topic 10
Topic 11
Topic 12