Adding & Subtracting Algebraic Fractions (Cambridge (CIE) IGCSE Maths)

Revision Note

Did this video help you?

Adding & Subtracting Algebraic Fractions

How do I add (or subtract) two algebraic fractions?

  • The rules for adding and subtracting algebraic fractions are the same as they are for fractions with numbers

  • STEP 1
    Find the lowest common denominator (LCD)

    • Sometimes the LCD can be found by multiplying the denominators together

      • E.g. The LCD for the fractions fraction numerator 1 over denominator x plus 2 end fraction and fraction numerator 1 over denominator x plus 5 end fraction is open parentheses x plus 2 close parentheses open parentheses x plus 5 close parentheses

      • Similarly, with numbers, the LCD of 1 half and 1 fifth is 2 × 5 = 10

    • Although multiplying the denominators will always give you a multiple, it is not necessarily the lowest multiple

      • E.g. The LCD for the fractions 1 over x and fraction numerator 1 over denominator 2 x end fraction is 2 x (not 2 x squared) as both terms already include an x

      • Similarly, with numbers, the LCD of 1 half and 1 fourth is just 4, not 2 × 4 = 8

    • Other examples include:

      • The LCD of fraction numerator 1 over denominator x plus 2 end fraction and fraction numerator 1 over denominator open parentheses x plus 2 close parentheses open parentheses x minus 1 close parentheses end fraction is open parentheses x plus 2 close parentheses open parentheses x minus 1 close parentheses

      • The LCD of fraction numerator 1 over denominator x plus 1 end fraction and 1 over open parentheses x plus 1 close parentheses squared is open parentheses x plus 1 close parentheses squared

      • The LCD of fraction numerator 1 over denominator open parentheses x plus 3 close parentheses open parentheses x minus 1 close parentheses end fraction and fraction numerator 1 over denominator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses end fraction is open parentheses x plus 3 close parentheses open parentheses x minus 1 close parentheses open parentheses x plus 4 close parentheses

  • STEP 2

    Write each fraction over the lowest common denominator

    Multiply the numerator of each fraction by the same amount as the denominator

    • E.g. table row cell fraction numerator x over denominator x minus 4 end fraction plus fraction numerator 1 over denominator x plus 2 end fraction end cell equals cell fraction numerator x open parentheses x plus 2 close parentheses over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction plus fraction numerator open parentheses x minus 4 close parentheses over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction end cell end table

  • STEP 3

    Write as a single fraction over the lowest common denominator and simplify the numerator

    • Do this by adding or subtracting the numerators

    • Take particular care if subtracting

    • E.g. table row blank blank cell fraction numerator x open parentheses x plus 2 close parentheses plus open parentheses x minus 4 close parentheses over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction end cell end table equals fraction numerator x squared plus 2 x plus x minus 4 over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction equals fraction numerator x squared plus 3 x minus 4 over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction

  • STEP 4

    Check at the end to see if the top factorises and the fraction can be simplified

    • E.g. fraction numerator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction, the top factorises but there are no common factors so it is in its most simple form

Examiner Tips and Tricks

  • Leaving the top and bottom of your answer in factorised form will help you see if anything cancels at the end

Worked Example

(a) Express fraction numerator x over denominator x plus 4 end fraction minus fraction numerator 3 over denominator x minus 1 end fraction as a single fraction.

The lowest common denominator is open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses
Write each fraction over this common denominator, remember to multiply the top of the fractions too

fraction numerator x open parentheses x minus 1 close parentheses over denominator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses end fraction minus fraction numerator 3 open parentheses x plus 4 close parentheses over denominator open parentheses x minus 1 close parentheses open parentheses x plus 4 close parentheses end fraction

Combine the fractions, as they now have the same denominator

fraction numerator x open parentheses x minus 1 close parentheses minus 3 open parentheses x plus 4 close parentheses over denominator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses end fraction

Simplify the numerator
Be careful expanding with the negative signs

fraction numerator x squared minus x minus 3 x minus 12 over denominator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses end fraction equals fraction numerator x squared minus 4 x minus 12 over denominator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses end fraction

Factorise the top

fraction numerator open parentheses x plus 2 close parentheses open parentheses x minus 6 close parentheses over denominator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses end fraction

There are no terms which would cancel here, so this is the final answer

(b) Express fraction numerator x minus 4 over denominator 2 open parentheses x minus 3 close parentheses end fraction minus fraction numerator x minus 1 over denominator 2 x end fraction as a single fraction.

The lowest common denominator is 2 x open parentheses x minus 3 close parentheses
(You could also use 4 x open parentheses x minus 3 close parentheses but this wouldn't be the lowest common denominator)

Write each fraction over this common denominator, remember to multiply the top of the fractions too

fraction numerator x open parentheses x minus 4 close parentheses over denominator 2 x open parentheses x minus 3 close parentheses end fraction minus fraction numerator open parentheses x minus 1 close parentheses open parentheses x minus 3 close parentheses over denominator 2 x open parentheses x minus 3 close parentheses end fraction

Combine the fractions, as they now have the same denominator

fraction numerator x open parentheses x minus 4 close parentheses minus open parentheses x minus 1 close parentheses open parentheses x minus 3 close parentheses over denominator 2 x open parentheses x minus 3 close parentheses end fraction

Simplify the numerator
Be careful expanding with negative signs

fraction numerator open parentheses x squared minus 4 x close parentheses minus open parentheses x squared minus 4 x plus 3 close parentheses over denominator 2 x open parentheses x minus 3 close parentheses end fraction equals fraction numerator x squared minus 4 x minus x squared plus 4 x minus 3 over denominator 2 x open parentheses x minus 3 close parentheses end fraction equals fraction numerator negative 3 over denominator 2 x open parentheses x minus 3 close parentheses end fraction

There is nothing else that can be factorised on the numerator, so this is the final answer

Error converting from MathML to accessible text.

There are other accepted answers, e.g. fraction numerator 3 over denominator 2 x open parentheses 3 minus x close parentheses end fraction

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Naomi C

Author: Naomi C

Expertise: Maths

Naomi graduated from Durham University in 2007 with a Masters degree in Civil Engineering. She has taught Mathematics in the UK, Malaysia and Switzerland covering GCSE, IGCSE, A-Level and IB. She particularly enjoys applying Mathematics to real life and endeavours to bring creativity to the content she creates.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.