Compound Interest (Cambridge (CIE) IGCSE Maths)

Revision Note

Test yourself

Did this video help you?

Compound Interest

What is compound interest?

  • Compound interest is where interest is calculated on the running total, not just the starting amount

    • This is different from simple interest where interest is only based on the starting amount

  • e.g. $ 100 earns 10% interest each year, for 3 years

    • At the end of year 1, 10% of $ 100 is earned

      • The total balance will now be 100+10 = $ 110

    • At the end of year 2, 10% of $ 110 is earned

      • The balance will now be 110+11 = $ 121

    • At the end of year 3, 10% of $ 121 is earned

      • The balance will now be 121+12.1 = $ 133.10

How do I calculate compound interest?

  • Compound interest increases an amount by a percentage, and then increases the new amount by the same percentage

    • This process repeats each time period (yearly or monthly etc)

  • We can use a multiplier to carry out the percentage increase multiple times

    • To increase $ 300 by 5% once, we would find 300×1.05

    • To increase $ 300 by 5%, each year for 2 years, we would find (300×1.05)×1.05

      • This could be rewritten as 300×1.052

    • To increase $ 300 by 5%, each year for 3 years, we would find ((300×1.05)×1.05)×1.05

      • This could be rewritten as 300×1.053

  • This can be extended to any number of periods that the interest is applied for 

    • If $ 2000 is subject to 4% compound interest each year for 12 years

    • Find 2000×1.0412, which is $ 3202.06

  • Note that this method calculates the total balance at the end of the period, not the interest earned

How do I calculate depreciation?

  • A similar method can be used if something decreases in value by a percentage every year (e.g. a car)

  • This is known as depreciation 

  • Change the multiplier to one which represents a percentage decrease

    • e.g. a decrease of 15% would be a multiplier of 0.85

  • If a car worth $ 16 000 depreciates by 15% each year for 6 years

    • Its value will be 16 000 × 0.856, which is $ 6034.39

Compound interest formula

  • An alternative method is to use the following formula to calculate the final balance

    • Final balance = P open parentheses 1 plus r over 100 close parentheses to the power of n space end exponent where

      • P is the original amount,

      • r is the % increase,

      • and n is the number of years

    • Note that 1 plus r over 100 is the same value as the multiplier

      • e.g. 1.15 for 15% interest

  • This formula is not given in the exam

Examiner Tips and Tricks

  • Double check if the question uses simple interest or compound interest

  • The formula for compound interest is not given in the exam

Worked Example

Jasmina invests $ 1200 in a savings account which pays compound interest at the rate of 4% per year for 7 years.

To the nearest dollar, what is her investment worth at the end of the 7 years?

We want an increase of 4% per year, this is equivalent to a multiplier of 1.04, or 104% of the original amount

This multiplier is applied 7 times; cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 space equals space 1.04 to the power of 7

Therefore the final value after 7 years will be

1200 space cross times space 1.04 to the power of 7 space equals space $ space 1579.118135

Round to the nearest dollar

bold $ bold space bold 1579

Alternate method
Using the formula for the final amount   P open parentheses 1 plus r over 100 close parentheses to the power of n space end exponent
Substitute P is 1200, r = 4 and n = 7 into the formula 

1200 open parentheses 1 plus 4 over 100 close parentheses to the power of 7

bold $ bold space bold 1579

Last updated:

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Jamie Wood

Author: Jamie Wood

Expertise: Maths

Jamie graduated in 2014 from the University of Bristol with a degree in Electronic and Communications Engineering. He has worked as a teacher for 8 years, in secondary schools and in further education; teaching GCSE and A Level. He is passionate about helping students fulfil their potential through easy-to-use resources and high-quality questions and solutions.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.