Upper & Lower Bounds (Cambridge (CIE) IGCSE Maths)
Revision Note
Written by: Naomi C
Reviewed by: Dan Finlay
Did this video help you?
Bounds & Error Intervals
What are bounds?
Bounds are the values that a rounded number can lie between
The smallest value that a number can take is the lower bound (LB)
The largest value that a number must be less than is the upper bound (UB)
The bounds for a number, , can be written as
Note that the lower bound is included in the range of values but the upper bound is not
How do we find the upper and lower bounds for a rounded number?
Identify the degree of accuracy to which the number has been rounded
E.g. 24 800 has been rounded correct to the nearest 100
Divide the degree of accuracy by 2
E.g. If an answer has been rounded to the nearest 100, half the value is 50
Add this value to the number to find the upper bound
E.g. 24 800 + 50 = 24 850
Subtract this value from the number to find the lower bound
E.g. 24 800 - 50 = 24 750
The error interval is the range between the upper and lower bounds
Error interval: LB ≤ x < UB
E.g. 24 750 ≤ 24 800 < 24 850
Examiner Tips and Tricks
Read the exam question carefully to correctly identify the degree of accuracy
It may be given as a place value, e.g. rounded to 2 s.f.
Or it may be given as a measure, e.g. nearest metre
Worked Example
The length of a road, , is given as , correct to 1 decimal place.
Find the lower and upper bounds for
The degree of accuracy is 1 decimal place, or 0.1 km
Divide this value by 2
0.1 ÷ 2 = 0.05
The true value could be up to 0.05 km above or below the given value
Upper bound: 3.6 + 0.05 = 3.65 km
Lower bound: 3.6 - 0.05 = 3.55 km
Upper bound: 3.65 km
Lower bound: 3.55 km
We could also write this as an error interval of , although this is not asked for in this question
Last updated:
You've read 0 of your 5 free revision notes this week
Sign up now. It’s free!
Did this page help you?