Factor & Remainder Theorems (Edexcel IGCSE Further Pure Maths)

Revision Note

Roger B

Written by: Roger B

Reviewed by: Dan Finlay

Factor Theorem

What is the factor theorem?

  • The factor theorem is used to find the linear factors of a function

    • This is closely related to finding the roots (or solutions) of a function or equation

  • For a function straight f open parentheses x close parentheses, the factor theorem tells us that

    • If  straight f open parentheses a close parentheses equals 0, then open parentheses x minus a close parentheses is a factor of straight f open parentheses x close parentheses

    •  If open parentheses x minus a close parentheses is a factor of straight f open parentheses x close parentheses, then  straight f open parentheses a close parentheses equals 0

How do I use the factor theorem?

  • Consider the  function straight f open parentheses x close parentheses where open parentheses x minus a close parentheses is a factor

    • Then by the factor theorem we know that straight f open parentheses a close parentheses equals 0

      • I.e., x equals a is a solution to the equation  straight f open parentheses x close parentheses equals 0

  • Or consider the function straight f open parentheses x close parentheses where straight f open parentheses a close parentheses equals 0

    • Then by the factor theorem we know  that open parentheses x minus a close parentheses is a factor of straight f open parentheses x close parentheses

    • Therefore  straight f left parenthesis x right parenthesis equals left parenthesis x minus a right parenthesis cross times Q left parenthesis x right parenthesis

    • where Q open parentheses x close parentheses is a function that is also a factor of straight f open parentheses x close parentheses

    • Hence  fraction numerator P left parenthesis x right parenthesis over denominator x minus a end fraction equals Q left parenthesis x right parenthesis

      • I.e. Q open parentheses x close parentheses is the quotient when P open parentheses x close parentheses is divided by open parentheses x minus a close parentheses

      • And the remainder is equal to zero

  • If the linear factor has a coefficient of x (other than 1) you must first factorise out the coefficient

    • For the linear factor  left parenthesis b x blank – blank c right parenthesis blank equals b open parentheses x minus c over b close parentheses

      • straight f open parentheses c over b close parentheses equals 0

      • straight f open parentheses x close parentheses equals b open parentheses x minus c over b close parentheses cross times Q open parentheses x close parentheses

Examiner Tips and Tricks

  • Be careful with the minus sign in a factor open parentheses x minus a close parentheses

    • That means a is a solution to f open parentheses x close parentheses equals 0, not negative a !

  • If you are looking for integer solutions to straight f open parentheses x close parentheses equals 0  (where straight f open parentheses x close parentheses is a polynomial)

    • those solutions will always be factors of the constant term in straight f open parentheses x close parentheses

Worked Example

a) Consider the functionspace straight f left parenthesis x right parenthesis equals x cubed minus 2 x squared minus x plus 2. Given that x equals 2 is a solution to the equation straight f open parentheses x close parentheses equals 0, write down a linear factor of straight f open parentheses x close parentheses.

By the factor theorem, if  straight f open parentheses a close parentheses equals 0 then open parentheses x minus a close parentheses is a factor of straight f open parentheses x close parentheses

bold italic x bold minus bold 2 


b) Use the factor theorem to determine whether open parentheses x plus 1 close parentheses is a factor of space straight g left parenthesis x right parenthesis equals 2 x cubed plus 3 x squared minus x plus 5.

By the factor theorem, open parentheses x minus a close parentheses can only be a factor of straight g open parentheses x close parentheses if  straight g open parentheses a close parentheses equals 0.

But be careful – here a is equal to negative 1, not 1

table row cell straight g open parentheses negative 1 close parentheses end cell equals cell 2 open parentheses negative 1 close parentheses cubed plus 3 open parentheses negative 1 close parentheses squared minus open parentheses negative 1 close parentheses plus 5 end cell row blank equals cell negative 2 plus 3 plus 1 plus 5 end cell row blank equals 7 end table
bold g stretchy left parenthesis negative 1 stretchy right parenthesis bold not equal to bold 0, so stretchy left parenthesis x plus 1 stretchy right parenthesis is not a factor of bold g stretchy left parenthesis x stretchy right parenthesis

c) It is given that open parentheses 2 x minus 3 close parentheses is a factor of space straight h open parentheses x close parentheses equals 2 x cubed minus b x squared plus 7 x minus 6. Find the value of b.

open parentheses 2 x minus 3 close parentheses equals 2 open parentheses x minus 3 over 2 close parentheses,  so open parentheses x minus 3 over 2 close parentheses is a factor of straight h open parentheses x close parentheses.

Therefore by the factor theorem, straight h open parentheses 3 over 2 close parentheses equals 0.

table row cell space 2 open parentheses 3 over 2 close parentheses cubed minus b open parentheses 3 over 2 close parentheses squared plus 7 open parentheses 3 over 2 close parentheses minus 6 end cell equals 0 row cell 27 over 4 minus 9 over 4 b plus 21 over 2 minus 6 end cell equals 0 row cell 45 over 4 minus 9 over 4 b end cell equals 0 row cell 9 over 4 b end cell equals cell 45 over 4 end cell row b equals cell 4 over 9 cross times 45 over 4 end cell end table

bold italic b bold equals bold 5

Remainder Theorem

What is the remainder theorem? 

  • The remainder theorem is used to find the remainder when we divide a polynomial function by a linear function

  • When a polynomial function straight f open parentheses x close parentheses is divided by a linear function open parentheses x minus a close parentheses, the value of the remainder R is given by straight f open parentheses a close parentheses equals R

    • Note, if straight f open parentheses a close parentheses equals 0 then open parentheses x minus a close parentheses is a factor of straight f open parentheses x close parentheses; this is the factor theorem

How do I use the remainder theorem?

  • Consider a polynomial function straight f open parentheses x close parentheses and a linear function open parentheses x minus a close parentheses 

    • fraction numerator straight f open parentheses x close parentheses over denominator open parentheses x minus a close parentheses end fraction equals Q open parentheses x close parentheses plus fraction numerator R over denominator open parentheses x minus a close parentheses end fraction

      • Q open parentheses x close parentheses is the quotient (also a polynomial function)

      • R is the remainder (a real number)

    • This may also be written as  straight f left parenthesis x right parenthesis equals Q left parenthesis x right parenthesis cross times open parentheses x minus a close parentheses plus R

    • The remainder theorem tells us that  R equals straight f open parentheses a close parentheses

      • I.e. we don't need to do the algebraic division to find the remainder!

  • If the linear factor has a coefficient of x (other than 1) then you must first factorise out the coefficient

    • For the linear function  left parenthesis b x blank – blank c right parenthesis blank equals b open parentheses x minus c over b close parentheses

      • R equals straight f open parentheses c over b close parentheses

Examiner Tips and Tricks

  • Be careful with the minus sign in open parentheses x minus a close parentheses

    • You need to put a into f open parentheses x close parentheses to find the remainder, not negative a !

Worked Example

a) Find the remainder when the functionspace straight f left parenthesis x right parenthesis equals 2 x to the power of 4 minus 2 x cubed minus x squared minus 3 x plus 1 is divided by open parentheses x minus 2 close parentheses.

We're dividing by open parentheses x minus a close parentheses equals open parentheses x minus 2 close parentheses

So a equals 2

By the remainder theorem the remainder will be straight f open parentheses a close parentheses equals straight f open parentheses 2 close parentheses

table row cell straight f open parentheses 2 close parentheses end cell equals cell 2 open parentheses 2 close parentheses to the power of 4 minus 2 open parentheses 2 close parentheses cubed minus open parentheses 2 close parentheses squared minus 3 open parentheses 2 close parentheses plus 1 end cell row blank equals cell 32 minus 16 minus 4 minus 6 plus 1 end cell row blank equals 7 end table

Remainder = 7

b) The remainder when straight g open parentheses x close parentheses equals 2 x cubed plus x squared plus b x plus 1 is divided by open parentheses 2 x plus 1 close parentheses is 3.  Find the value of b.

open parentheses 2 x plus 1 close parentheses equals 2 open parentheses x plus 1 half close parentheses equals 2 open parentheses x minus open parentheses negative 1 half close parentheses close parentheses

So here the value of a to use is  negative 1 half

By the remainder theorem the remainder will be equal to straight g open parentheses negative 1 half close parentheses

table row cell 2 open parentheses negative 1 half close parentheses cubed plus open parentheses negative 1 half close parentheses squared plus b open parentheses negative 1 half close parentheses plus 1 end cell equals 3 row cell negative 1 fourth plus 1 fourth minus 1 half b plus 1 end cell equals 3 row cell 1 minus b over 2 end cell equals 3 row cell negative b over 2 end cell equals 2 end table

bold italic b bold equals bold minus bold 4

Last updated:

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Roger B

Author: Roger B

Expertise: Maths

Roger's teaching experience stretches all the way back to 1992, and in that time he has taught students at all levels between Year 7 and university undergraduate. Having conducted and published postgraduate research into the mathematical theory behind quantum computing, he is more than confident in dealing with mathematics at any level the exam boards might throw at you.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.