Trigonometric Functions (Cambridge (CIE) IGCSE Additional Maths): Revision Note

Amber

Author

Amber

Last updated

Trigonometric Functions

What are the trigonometric functions?

  • The three standard trigonometric functions are: sine, cosine and tangent

  • The functions are many-to-one mappings

    • They do not have inverses unless their domain is restricted

Function

Notation

Domain

Range

Sine

sin open parentheses x close parentheses

x element of straight real numbers

negative 1 less or equal than sin open parentheses x close parentheses less or equal than 1

Cosine

cos open parentheses x close parentheses

x element of straight real numbers

negative 1 less or equal than cos open parentheses x close parentheses less or equal than 1

Tangent

tan open parentheses x close parentheses

x element of straight real numbers
x not equal to plus-or-minus 90 degree comma plus-or-minus 270 degree comma plus-or-minus 450 degree comma... space open parentheses in space degrees close parentheses
x not equal to plus-or-minus straight pi over 2 comma plus-or-minus fraction numerator 3 straight pi over denominator 2 end fraction comma plus-or-minus fraction numerator 5 straight pi over denominator 2 end fraction comma... space open parentheses in space radians close parentheses

tan open parentheses x close parentheses element of straight real numbers

How can I use the trigonometric functions with right-angled triangles?

  • The three trigonometric functions sine, cosine and tangent give the ratios of side lengths in right-angled triangles

  • For an acute angle in a right-angled triangle:

    • Sine of the angle is the length of the side opposite the angle divided by the hypotenuse

    • Cosine of the angle is the length of the side adjacent to the angle divided by the hypotenuse

    • Tangent of the angle is the length of the opposite side divided by the length of the adjacent side

  • You can use the acronym SOHCAHTOA to help you remember these

The trig functions in relation to the sides of a right-angled triangle

 

How can I use the trigonometric functions with non-right-angled triangles?

  • You can find missing angles and the lengths of missing sides using the sine rule and the cosine rule

  • You can also use the area formula

The formula for the sine rule, cosine rule and area of a triangle

 

Non-Right-Angled Triangles Diagram 1b, A Level & AS Level Pure Maths Revision Notes

 

Non-Right-Angled Triangles Diagram 1c, A Level & AS Level Pure Maths Revision Notes

 

Non-Right-Angled Triangles Diagram 1d, A Level & AS Level Pure Maths Revision Notes

 

Reciprocal Trig Functions

What are the reciprocal trig functions?

  • There are three reciprocal trig functions that each correspond to either sin, cos or tan

    • Secant (sec x)

      •  sec invisible function application x equals fraction numerator 1 over denominator cos space invisible function application x end fraction

    • Cosecant (cosec x)

      • cosec blank x equals fraction numerator 1 over denominator sin space invisible function application x end fraction

    • Cotangent (cot x)

      • cot space x blank equals fraction numerator 1 over denominator tan invisible function application space x blank end fraction  

  • A good way to remember which function is which is to look at the third letter in each of the reciprocal trig functions

    • cot x is 1 over tan x etc

  • Each of the reciprocal trig functions are undefined for certain values of x

    • sec x is undefined for values of x for which cos x = 0

    • cosec x is undefined for values of x for which sin x = 0

    • cot x is undefined for values of x for which tan x = 0

      • When tan x is undefined, cot x = 0

  • Be careful not to confuse the reciprocal trig functions with the inverse trig functions

    • sin to the power of negative 1 end exponent invisible function application space x blank not equal to fraction numerator 1 over denominator sin space invisible function application x end fraction

Worked Example

Without the use of a calculator, find the values of

a) sec space invisible function application pi over 6

The third letter of sec is c so it is the reciprocal of cos.

sec open parentheses straight pi over 6 close parentheses equals fraction numerator 1 over denominator cos open parentheses straight pi over 6 close parentheses end fraction

Write down the value of cos open parentheses straight pi over 6 close parentheses.

sec open parentheses straight pi over 6 close parentheses equals fraction numerator 1 over denominator open parentheses fraction numerator square root of 3 over denominator 2 end fraction close parentheses end fraction

Simplify.

bold sec stretchy left parenthesis pi over 6 stretchy right parenthesis bold equals fraction numerator bold 2 over denominator square root of bold 3 end fraction bold space bold or bold space fraction numerator bold 2 square root of bold 3 over denominator bold 3 end fraction

b) cot space 45 degree 

The third letter of cot is t so it is the reciprocal of tan.

cot open parentheses 45 degree close parentheses equals fraction numerator 1 over denominator tan open parentheses 45 degree close parentheses end fraction

Write down the value of tan(45°).

cot open parentheses 45 degree close parentheses equals 1 over 1

bold cot stretchy left parenthesis 45 degree stretchy right parenthesis bold equals bold 1

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Amber

Author: Amber

Expertise: Maths

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.