Secondary Storage (Cambridge (CIE) IGCSE Computer Science)

Revision Note

James Woodhouse

Expertise

Computer Science

Secondary Storage

  • Storage devices are non-volatile secondary storage, that retain digital data within a computer system

  • They provide a means of storing, accessing, and retrieving data, which can include software applications, documents, images, videos, and more

  • There are 3 types of storage:

    • Magnetic

    • Solid-state (flash memory)

    • Optical

  • Computer systems need both primary and secondary storage to operate

  • Both types of storage play a crucial role in the operation of a computer system

  • A quick comparison of primary and secondary storage shows:

Primary

Secondary

Volatile (with the exception of ROM)

Non-volatile

Small capacity

Large capacity

Why do you need secondary storage?

  • A computer needs secondary storage for long term storage of programs and data that are currently not in use 

  • Secondary storage is needed as ROM is read only and RAM is volatile

  • Secondary storage holds the programs and data whilst the computer is turned off (non-volatile)

  • Performance of secondary storage is slower than primary storage but capacity is much higher which makes it perfect for backup & archive of data files

What are the characteristics of secondary storage?

  • Capacity - What is the maximum amount of data that can be stored?

  • Speed - How fast can data be read from and written to? (R/W)

  • Cost - How much does it cost?

  • Portability - How easy is it to move around? What is the physical size? Weight?

  • Durability - How robust is the storage?

  • Reliability - What is the probability that the device will consistently perform its function?

Worked Example

A games console has secondary storage.

State, using an example, why the games console needs secondary storage [2]

How to answer this question

  • They keyword is 'why', why does a games console need secondary storage? give an example, do not just describe what secondary storage is!

Answer

  • To store data once the power is turned off / permanently // for non-volatile storage

  • Examples could include:

    • Storing games

    • Save games

    • User data/profiles

    • Downloaded content/applications/updates

Magnetic Storage

What is magnetic storage?

  • Magnetic storage is a type of non-volatile media that uses magnets (polarity) to store binary 0s and 1s

  • A magnetic hard disk is made up of several metal discs coated with a magnetic material

    • These are called platters

    • Iron particles on each platter are magnetised to represent a 0 or 1

Diagram of a hard disk showing labeled components: read head, platter, track, and sector. The read head hovers above the platter and sectors are segments of the platter.
  • Each platter is divided by concentric circles creating several tracks and wedge shaped sectors

  • Where they intersect is a track sector

Diagram of a hard drive showing platters, tracks, sectors, and disk read-and-write heads. Labels explain components, including magnetic layers and their role in data storage.
  • The hard drive spins the metal disk(s) at a high speed (typically around 5400-7200 RPM) using a motor

  • A read/write arm, controlled by an actuator, moves the head over the surface of the disc to the location of the data

  • The data is read/written using electromagnets

Advantages

Disadvantages

Capacity - High storage

Durability - Moving parts can get damaged if dropped

Cost - Low per gigabyte

Portability - Heavy & bulky making them less convenient for transport

Speed - Moderate read/write access 

Reliability - Prone to mechanical failure

 

Noise - Loud (spinning disks)

Solid-state (Flash Memory)

What is solid state (flash memory)?

  • Solid-state (flash memory) storage is a type of non-volatile media that uses electronic circuits to store binary 0s and 1s

  • Examples of solid state storage devices include:

    • Solid state drives (SSD) - replacing magnetic hard drives as a computers primary secondary storage device as capacity increases and cost decreases

    • USB flash memory - most common form of portable storage device

  • It uses NAND and NOR gates in electrical circuits to persistently control the flow of electrons

Diagram showing sections of a floating gate transistor: control gate (orange), oxide layers (gray) above and below floating gate (orange), and oxide layer with electrons (blue dots).
  • Solid-state (flash memory) is memory made up of tiny cells that can contain one bit of data (1 or 0)

  • Each cell contains a transistor that acts as a switch that can be turned on or off

  • The transistor contains two main parts:

    • Control gate - top layer of transistor, connects to circuit and controls if current can flow through the transistor

    • Floating gate - can hold a charge (like a tiny rechargeable battery) and is sandwiched between two layers of insulating material (Oxide)

  • To store data a charge is placed on the floating gate

    • A high voltage is applied to the control gate, which allows electrons to be pushed through the oxide layer and onto the floating gate

  • To remove data, a high voltage charge is applied in the opposite direction, pulling the electrons off the floating gate

Advantages

Disadvantages

Capacity - Medium/high storage

Cost - Very high per gigabyte

Speed - Very fast read/write access

Reliability - Limited read/write cycles

Durability - No moving parts

 

Portability - Small and no moving parts

 

Noise - Silent 

 

Optical Storage

What is optical storage?

  • Optical storage is a type of non-volatile media that uses lasers to burn the surface of a disk, creating pits and lands suitable for storing binary 0s and 1s

  • Examples of optical storage include:

    • Blu-rays have the largest capacity

    • CDs have the lowest capacity

    • CD-R are read-only (you cannot save data on to them)

    • CD-RW can be written to and read from

    • DVD-RW can be written to and read from

A rectangular waveform diagram with labeled sections 'LAND' and 'PIT'. Below the waveform is a binary sequence: 0001000000000010000100000000100000000001000.
  • All optical devices work by shining a laser at the disk and processing the reflection

  • An arm moves the laser across the surface of the disk

  • In CD-Rs a laser burns the data, permanently on to the disk, by creating pits and lands

  • The laser is also used to read the data from the pits and lands

  • When the laser light hits the point where the pit changes into a land or vice versa the light scatters and is not reflected back as well.

  • This is captured by a sensor and can be interpreted as a change in the binary value

Advantages

Disadvantages

Cost - Very low per gigabyte

Capacity - Very low

Durability - No moving parts

Speed - Very slow read/write access

Portability - Small and no moving parts

Reliability - Prone to scratches

Noise - Silent 

 

Worked Example

Zarmeen has purchased a new tablet computer. The tablet has an internal secondary storage device.

The storage device is a solid state device.

  1. Give three benefits of the tablet having a solid state device instead of a magnetic device [3]

  2. Give two drawbacks of the tablet having a solid state device instead of a magnetic device [2]

Answers

  • Benefits

    • Faster access / read/write speeds

    • Smaller in physical size

    • More durable // no moving parts

  • Drawbacks

    • More expensive (per gigabyte)

    • Smaller capacity (usually)

    • Limited number of read/write cycles

Guidance

  • Portable is not enough on it's own

  • No moving parts is not enough on it's own

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

James Woodhouse

Author: James Woodhouse

James graduated from the University of Sunderland with a degree in ICT and Computing education. He has over 14 years of experience both teaching and leading in Computer Science, specialising in teaching GCSE and A-level. James has held various leadership roles, including Head of Computer Science and coordinator positions for Key Stage 3 and Key Stage 4. James has a keen interest in networking security and technologies aimed at preventing security breaches.