Diamond & Graphite (Cambridge (CIE) IGCSE Chemistry)

Revision Note

Caroline Carroll

Written by: Caroline Carroll

Reviewed by: Stewart Hird

Updated on

Did this video help you?

Structure of graphite & diamond

What is the structure of graphite?

  • Each carbon atom in graphite is bonded to three others forming layers of hexagons, leaving one free electron per carbon atom which becomes delocalised

  • The covalent bonds within the layers are very strong, but the layers are attracted to each other by weak intermolecular forces

Diagram to show the bonding and structure in graphite

Graphite structure, IGCSE & GCSE Chemistry revision notes

The structure and bonding in graphite

  • Diamond and graphite are allotropes of carbon which have giant covalent structures

  • Both substances contain only carbon atoms but due to the differences in bonding arrangements they are physically completely different

  • Giant covalent structures contain billions of non-metal atoms, each joined to adjacent atoms by covalent bonds forming a giant lattice structure

What is the structure of diamond?

  • In diamond, each carbon atom bonds with four other carbons, forming a tetrahedron

  • All the covalent bonds are identical, very strong and there are no intermolecular forces

Diagram to show the formation of a covalent bond

Diamond structure, IGCSE & GCSE Chemistry revision notes

Diagram showing the structure and bonding arrangement in diamond

Uses of graphite & diamond

What are the properties and uses of graphite?

  • Graphite conducts electricity 

    • Each carbon atom is bonded to three others leaving one free electron per carbon atom 

    • These free (delocalised) electrons exist in between the layers

    • They are free to move through the structure and carry charge

  • Graphite has a high melting point

    • Graphite has a giant covalent structure

    • There are strong covalent bonds between the carbon atoms

    • These need lots of energy to break 

  • Graphite is slippery 

    • Graphite is arranged in layers

    • Although the atoms within the layers are joined by strong covalent bonds, the layers have only weak intermolecular forces between them

    • As a result the layers can slide over each other

    • This property allows graphite to be used in pencils and as an industrial lubricant

Examiner Tips and Tricks

Don’t confuse pencil lead with the metal lead – they have nothing in common. Pencil lead is actually graphite, and historical research suggests that in the past, lead miners sometimes confused the mineral galena (lead sulfide) with graphite; since the two looked similar they termed both minerals ‘lead’. The word graphite derives from the Latin word ‘grapho’ meaning ‘I write’, so it is a well named mineral!

What are the properties and uses of diamond?

  • Diamond does not conduct electricity

    • All the outer shell electrons in carbon are held in the four covalent bonds around each carbon atom

    • As a result, there are no freely moving particles to carry a charge

  • Diamond has a very high melting point

    • Diamond has a giant covalent structure

    • There are strong covalent bonds between the carbon atoms

    • These need lots of energy to break 

  • It is extremely hard and dense

    • It has strong covalent bonds and each carbon atom is bonded to four other carbon atoms 

    • Diamond's hardness makes it very useful in cutting tools like drills 

  • Diamond has the following physical properties:

    • It does not conduct electricity

    • It has a very high melting point

    • It is extremely hard and dense

Examiner Tips and Tricks

Diamond is the hardest naturally occurring mineral, but it is by no means the strongest. Students often confuse hard with strong, thinking it is the opposites of weak. Diamonds are hard, but brittle – that is, they can be smashed fairly easily with a hammer. The opposite of saying a material is hard is to describe it as soft.

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Caroline Carroll

Author: Caroline Carroll

Expertise: Physics Subject Lead

Caroline graduated from the University of Nottingham with a degree in Chemistry and Molecular Physics. She spent several years working as an Industrial Chemist in the automotive industry before retraining to teach. Caroline has over 12 years of experience teaching GCSE and A-level chemistry and physics. She is passionate about creating high-quality resources to help students achieve their full potential.

Stewart Hird

Author: Stewart Hird

Expertise: Chemistry Lead

Stewart has been an enthusiastic GCSE, IGCSE, A Level and IB teacher for more than 30 years in the UK as well as overseas, and has also been an examiner for IB and A Level. As a long-standing Head of Science, Stewart brings a wealth of experience to creating Topic Questions and revision materials for Save My Exams. Stewart specialises in Chemistry, but has also taught Physics and Environmental Systems and Societies.