Composite Functions (CIE IGCSE Additional Maths)

Revision Note

Test yourself
Paul

Author

Paul

Last updated

Did this video help you?

Composite Functions

What is a composite function?

  • A composite function is where one function is applied after another function

Composite function fg(x) applies g first then f

  • The ‘output’ of one function will be the ‘input’ of the next one
  • Sometimes called function-of-a-function
  • A composite function can be denoted
    • space fg left parenthesis x right parenthesis
    • space straight f stretchy left parenthesis straight g left parenthesis x stretchy right parenthesis right parenthesis
    • All of these mean “straight f of straight g left parenthesis x right parenthesis

Composite functions as function machines 

How do I work with composite functions?

Notation for composite functions

  • Recognise the notation
    •  means “f of g of x”
    The order matters
    • First apply straight g to x to get straight g left parenthesis x right parenthesis
    • Then apply straight f to straight g open parentheses x close parentheses to get straight f stretchy left parenthesis straight g left parenthesis x stretchy right parenthesis right parenthesis
    • Always start with the function closest to the variable
    • fg left parenthesis x right parenthesis is not usually equal to gf left parenthesis x right parenthesis

Special cases

  • fg open parentheses x close parentheses and gf open parentheses x close parentheses are generally different but can sometimes be the same
  • ff open parentheses x close parentheses is written as straight f squared stretchy left parenthesis x stretchy right parenthesis
    • Note that trig functions are exceptions to this rule
      • e.g. sin squared open parentheses x close parentheses means open parentheses sin open parentheses x close parentheses close parentheses squared not sin open parentheses sin open parentheses x close parentheses close parentheses
  • For inverse functions, ff to the power of negative 1 end exponent open parentheses x close parentheses equals straight f to the power of negative 1 end exponent straight f open parentheses x close parentheses equals x

In general fg is a different function to gf

Worked example

Two functions, straight f open parentheses x close parentheses and straight g open parentheses x close parentheses are

straight f open parentheses x close parentheses equals x squared plus 3 x minus 2
straight g open parentheses x close parentheses equals x plus 3

a)
Find straight f open parentheses 3 close parentheses and straight g open parentheses 3 close parentheses.

table row cell straight f open parentheses 3 close parentheses end cell equals cell open parentheses 3 close parentheses squared plus 3 open parentheses 3 close parentheses minus 2 end cell row blank equals cell 9 plus 6 minus 2 end cell end table

straight g open parentheses 3 close parentheses equals 3 plus 3

bold f stretchy left parenthesis 3 stretchy right parenthesis bold equals bold 13 bold comma bold space bold g stretchy left parenthesis 3 stretchy right parenthesis bold equals bold 6

b)
Find, in terms of xfg open parentheses x close parentheses.

straight g is the first function to be applied ...

table row cell therefore fg open parentheses x close parentheses end cell equals cell straight f open square brackets x plus 3 close square brackets end cell row blank equals cell open parentheses x plus 3 close parentheses squared plus 3 open parentheses x plus 3 close parentheses minus 2 end cell row blank equals cell x squared plus 6 x plus 9 plus 3 x plus 9 minus 2 end cell end table

Error converting from MathML to accessible text.

Domain & Range of Composite Functions

How do I find the domain and range of composite functions?

  • Use logic to determine the domain and range of a composite function
  • For fg open parentheses x close parentheses the first function to be applied will be straight g
    • So, at best, the domain of fg open parentheses x close parentheses will be the same as the domain of straight g open parentheses x close parentheses
  • However, for this to be the case, the range of straight g open parentheses x close parentheses must be contained within the domain of straight f open parentheses x close parentheses
    • If this is not the case, then restrictions on the domain of fg open parentheses x close parentheses will be required
  • Similarly, at best, the range of fg open parentheses x close parentheses will be the same as the range of straight f open parentheses x close parentheses
    • But if the domain of straight f open parentheses x close parentheses has been affected, the range of fg open parentheses x close parentheses will also be affected

Examiner Tip

  • Domain and range are important in composite funcitons like fg open parentheses x close parentheses
    • the ‘output’ (range) of g must be in the domain of f(x), so fg open parentheses x close parentheses could exist,
      but gf open parentheses x close parentheses may not (or not for some values of x)

Worked example

Two functions, straight f open parentheses x close parentheses and straight g open parentheses x close parentheses are defined as follows

Error converting from MathML to accessible text.

straight g open parentheses x close parentheses equals x squared comma space space x greater than 1

a)
Write down the range of straight f open parentheses x close parentheses and the range of straight g open parentheses x close parentheses.

As the domain of straight f open parentheses x close parentheses is 0 less than x less than 11 over x will always be greater than 1,

The range of Error converting from MathML to accessible text. is bold f bold greater than bold 1

The square of any value will be positive or zero, but here, x equals 0 is not included in the domain for straight g open parentheses x close parentheses.

The range of is bold g bold greater than bold 1

b)
Use your answers to (a) to help explain why fg open parentheses x close parentheses does not exist.

bold g is the first function to be applied
The range of bold g would need to be contained within the domain of bold f
But the range of bold g is bold g bold greater than bold 1 which is outside the domain of bold f which is bold 0 bold less than bold italic x bold less than bold 1
does not exist

c)
Find the range of gf open parentheses x close parentheses,

straight f is the first function.  The range of straight f is straight f greater than 1.  This is the same as the domain of straight g space open parentheses x greater than 1 close parentheses.

The range of bold gf is bold gf bold greater than bold 1

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Paul

Author: Paul

Expertise: Maths

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams – one of the many reasons he is excited to be a member of the SME team.