Newton’s Second Law (OCR GCSE Physics A (Gateway))

Revision Note

Katie M

Written by: Katie M

Reviewed by: Caroline Carroll

Newton's Second Law

  • Newton's second law of motion states:

    The acceleration of an object is proportional to the resultant force acting on it and inversely proportional to the object's mass

  • Newton's second law explains the following important principles:

    • An object will accelerate (change its velocity) in response to a resultant force

    • The bigger this resultant force, the larger the acceleration

    • For a given force, the greater the object's mass, the smaller the acceleration experienced

  • The image below shows some examples of Newton's second law in action:

Newton second law in action, downloadable IGCSE & GCSE Physics revision notes

Objects like baseballs and lawnmowers accelerate when a resultant force is applied on them. The size of the acceleration is proportional to the size of the resultant force

Calculating Force & Acceleration

  • Newton's second law can be expressed as an equation:

F = ma

  • Where:

    • F = resultant force on the object in Newtons (N)

    • m = mass of the object in kilograms (kg)

    • a = acceleration of the object in metres per second squared (m/s2)

  • This equation can be rearranged with the help of a formula triangle:

Fma Formula Triangle, downloadable IGCSE & GCSE Physics revision notes

Force, mass, acceleration formula triangle

Worked Example

A car salesman says that his best car has a mass of 900 kg and can accelerate from 0 to 27 m/s in 3 seconds. Calculate:

a) The acceleration of the car in the first 3 seconds.

b) The force required to produce this acceleration.

Answer:

Part (a)

Step 1: List the known quantities

  • Initial velocity = 0 m/s

  • Final velocity = 27 m/s

  • Time, t = 3 s

Step 2: Calculate the change in velocity

change in velocity = Δv = final velocity − initial velocity

Δv = 27 − 0 = 27 m/s

Step 3: State the equation for acceleration

a equals fraction numerator straight capital delta v over denominator t end fraction

Step 4: Calculate the acceleration

a = 27 ÷ 3 = 9 m/s2

Part (b)

Step 1: List the known quantities

  • Mass of the car, m = 900 kg

  • Acceleration, a = 9 m/s2

Step 2: Identify which law of motion to apply

  • The question involves quantities of force, mass and acceleration, so Newton's second law is required:

F = ma

Step 3: Calculate the force required to accelerate the car

F = 900 × 9 = 8100 N

Worked Example

Three shopping trolleys, A, B and C, are being pushed using the same force. This force causes each trolley to accelerate.

WE Newton second law, downloadable IGCSE & GCSE Physics revision notes

Which trolley will have the smallest acceleration? Explain your answer.

Answer:

Step 1: Identify which law of motion to apply

  • The question involves quantities of force and acceleration, and the image shows trolleys of different masses, so Newton's second law is required:

F = ma

Step 2: Re-arrange the equation to make acceleration the subject

a equals F over m

Step 3: Explain the inverse proportionality between acceleration and mass  

  • Acceleration is inversely proportional to mass

  • This means for the same amount of force, a large mass will experience a small acceleration

  • Therefore, trolley C will have the smallest acceleration because it has the largest mass

Last updated:

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Katie M

Author: Katie M

Expertise: Physics

Katie has always been passionate about the sciences, and completed a degree in Astrophysics at Sheffield University. She decided that she wanted to inspire other young people, so moved to Bristol to complete a PGCE in Secondary Science. She particularly loves creating fun and absorbing materials to help students achieve their exam potential.

Caroline Carroll

Author: Caroline Carroll

Expertise: Physics Subject Lead

Caroline graduated from the University of Nottingham with a degree in Chemistry and Molecular Physics. She spent several years working as an Industrial Chemist in the automotive industry before retraining to teach. Caroline has over 12 years of experience teaching GCSE and A-level chemistry and physics. She is passionate about creating high-quality resources to help students achieve their full potential.