Surface Area (Edexcel GCSE Maths)

Revision Note

Last updated

Did this video help you?

Surface Area

What is surface area?

  • The surface area of a 3D object is the sum of the areas of all the faces that make up the shape

    • Area is a 2D idea being applied into a 3D situation

    • A face is one of the flat or curved surfaces that make up a 3D object

How do I find the surface area of cubes, cuboids, pyramids, and prisms?

  • In cubes, cuboids, polygonal-based pyramids, and polygonal-based prisms (ie. pyramids and prisms whose bases have straight sides), all the faces are flat

  • The surface area is found by

    • calculating the area of each individual flat face

    • adding these areas together

  • When calculating surface area, it can be helpful to draw a 2D net for the 3D shape in question

    • For example, consider a square-based pyramid where the top of the pyramid is directly above the centre of the base

      • Its net will consist of a square base and four identical isosceles triangular faces

      • Calculate the area of a square and the area of each triangle then add them together

Net of a square-based pyramid

How do I find the surface area of a cylinder?

  • A cylinder has two flat surfaces (the top and the base) and one curved surface

  • The net of a cylinder consists of two circles and a rectangle

    A cylinder and its net
  • The curved surface area (which is a rectangle) of a cylinder, A, with base radius, r, and height, h, is therefore given by

    • A equals 2 pi italic space r space h

    • This is the circumference of the circle, multiplied by the height

    • This formula is not given to you in the exam

  • The total surface area of a cylinder, ATotal, can be found using the formula

    • A subscript T o t a l end subscript equals 2 pi italic space r italic space h plus 2 pi italic space r squared

    • This is the area of the curved surface (a rectangle), plus two circles of radius r

    • This formula is not given to you in the exam

How do I find the surface area of a cone?

  • A cone has one flat surface (the base) and one curved surface

  • The net of a cone, with radius, r, perpendicular height, h, and sloping edge, (slant height), l, consists of

    • A circular base

    • A sector with radius, l, and an arc length equal to the circumference of the base

A cone and its net
  • The curved surface area of a cone, A, with radius, r, perpendicular height, h, and sloping edge, l, can be found using the formula

    • A equals pi italic space r space l

    • This formula is given to you in the exam if it is needed

  • The total surface area of a cone, ATotal, can be found using the formula

    • A subscript T o t a l end subscript equals pi italic space r space l italic plus pi italic space r squared

    • This formula is not given to you in the exam

      • It is just the curved surface area formula above, plus the area of a circle

How do I find the surface area of a sphere?

  • A sphere has a single curved surface

A sphere
  • The surface area of a sphere, A, with radius, r, can be found using the formula

    • A equals 4 pi italic space r squared

    • This formula is given to you in the exam if it is needed

Examiner Tips and Tricks

  • Read the question carefully, you may need to add additional areas, e.g. a base

  • Make you are confident in calculating the areas of rectangles, circles and triangles

Worked Example

Find the surface area of the cuboid shown below.

q7-1-4-7-medium-edexcel-gcse-maths

Find the area of the face at the front

2 cm × 10 cm = 20 cm2 

Find the area of the face at the side

2 cm × 15 cm = 30 cm2 

Find the area of the face at the top

10 cm × 15 cm = 150 cm2 

There are two of each face
Add together the areas of all 6 faces

20 + 20 + 30 + 30 + 150 + 150 = 400

400 cm2

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?