Did this video help you?
Algebra Basics (AQA GCSE Maths)
Revision Note
Substitution
What is substitution?
- Substitution is where we replace letters in a formula with their values
- This allows you to find one other value that is in the formula
How do we substitute numbers into a formula?
- Write down the formula, if not clearly stated in question
- Substitute the numbers given, using brackets around negative numbers, (-3), (-5) etc
- Simplify any calculations if you can
- Rearrange the formula if necessary (it is usually easier to substitute first)
- Work out the calculation (use a calculator if allowed)
Are there any common formulae to be aware of?
- Formulae for accelerating objects are often used
- The letters mean the following:
- t stands for the amount of time something accelerates for (in seconds)
- u stands for its initial speed (in m/s) - the speed at the beginning
- v stands for its final speed (in m/s) - the speed after t seconds
- a stands for its acceleration (in m/s2) during in that time
- s stands for the distance covered in t seconds
- You do not need to memorise these formulae, but you should know how to substitute numbers into them
- You should also understand the difference between initial speed (u) and final speed (v)
Worked example
Substitute the numbers given.
Use brackets () around negative numbers that you have substituted so that you don't forget about them.
It is a good idea to show every step of working to make sure that you are following the order of operations correctly.
Substitute the values you are given into the formula.
Simplify.
Subtract 8 from both sides.
Divide both sides by 2.
Did this video help you?
Collecting Like Terms
How do we collect like terms?
- TERMS are separated by + or –
- The sign belongs to the coefficient of the term after the symbol
- If there is no symbol in front of the first term then this is a positive term
- 2x - 3y means +2 x's and -3 y's
- “LIKE” terms must have exactly the same LETTERS AND POWERS (the COEFFICIENT can be different)
- Examples of like terms:
- 2x and 3x
- 2x2 and 3x2
- 2xy and 3xy
- 4(x + y) and 5(x + y)
- Examples that are NOT like terms
- 2x and 3y (different letters)
- 2x2 and 3x4 (different powers)
- 2xy and 3xyz (different letters)
- 4(x + y) and 5(x + y)2 (different powers)
- Remember multiplication can be done in any order
- xy and yx are like terms
- Examples of like terms:
- Add the COEFFICIENTS of like terms
- If the answer is a positive answer then put "+" in front if there are other terms before it
- x - 2y + 5y = x + 3y
- If the answer is a negative number then put "-" in front
- x - 5y + 2y = x - 3y
- If the answer is a positive answer then put "+" in front if there are other terms before it
Examiner Tip
- A “coefficient” answers the question “how many?”
For example:
the coefficient of x in 2x2 – 5x + 2 is -5
and:
the coefficient of x in ax2 + bx + c is b
Worked example
Simplify .
Reorder the terms so that the 's are together, as are the 's, 's and the constants.
Make sure that you keep the same sign in front of them when you reorder them.
Add the coefficients of the 'like' terms.
You've read 0 of your 5 free revision notes this week
Sign up now. It’s free!
Did this page help you?