Forming Equations from Shapes (AQA GCSE Maths)

Revision Note

Mark Curtis

Written by: Mark Curtis

Reviewed by: Dan Finlay

Updated on

Forming Equations from Shapes

How do I form equations from shapes?

  • You need to use all the information given on the diagram and any specific properties of that shape

  • Common 2D shapes that you should know properties for are

    • Triangles: equilateral, isosceles, scalene, right-angled

    • Quadrilaterals: square, rectangle, kite, rhombusparallelogram, trapezium

  • You may be asked about perimeter, area or angles

  • You may be asked about polygons

    • Regular vs irregular polygons

    • Interior vs exterior angles

      • The sum of interior angles is 180(n-2) for an n-sided polygon

  • You may be asked about angles in parallel lines

    • Alternative, corresponding and co-interior

  • You may be asked about 3D shapes involving surface area and volume

    • Prisms have constant cross sections 

      • Volume is cross-section area multiplied by length

Is there anything else that can help?

  • Sketch a diagram if none is given

  • Split up uncommon shapes into the sum or difference of common shapes

  • Look out for important extra information

    • For example, a trapezium "with a line of symmetry"

  • With irregular shapes, assume all angles and lengths are different (unless told otherwise)

  • Put brackets around algebraic expressions when substituting them into geometric properties

Forming and solving an equation from an irregular polygon

Examiner Tips and Tricks

  • Read the question carefully - does it want an angle? perimeter? total area? curved surface area? etc.

  • For surface area and volume questions, check the list of formulas given in the exam.

Worked Example

A rectangle has a length of 3 x plus 1 cm and a width of 2 x minus 5 cm.

Its perimeter is equal to 22 cm.

(a) Use the above information to find the value of x.

The perimeter of a rectangle is 2 × length + 2 × width

2 left parenthesis 3 x plus 1 right parenthesis plus 2 left parenthesis 2 x – 5 right parenthesis

Expand the brackets

space 6 x plus 2 plus 4 x minus 10

Simplify by collecting like terms

10 x minus 8

This perimeter is 22, so set this expression equal to 22

10 x – 8 equals 22

Solve this equation by adding 8 then dividing by 10

table row cell 10 x end cell equals cell 22 plus 8 end cell row cell 10 x end cell equals 30 row x equals cell 30 over 10 end cell row x equals 3 end table

bold italic x bold equals bold 3

(b) Find the area of the rectangle.

The area of a rectangle is its length multiplied by is width
Substitute the value of x  from part (a) into the length and width given in the question

length is 3 × 3 + 1 = 10

width is 2 × 3 - 5 = 1

Find the area (multiply length by width)

10 × 1

Include the correct units for area

Area = 10 cm2

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Mark Curtis

Author: Mark Curtis

Expertise: Maths

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.