Syllabus Edition

First teaching 2014

Last exams 2024

|

Discharge Calculations (DP IB Physics: HL)

Revision Note

Katie M

Author

Katie M

Last updated

Capacitor Discharge Equation

  • The time constant is used in the exponential decay equations for the current, charge or potential difference (p.d) for a capacitor discharging through a resistor
    • These can be used to determine the amount of current, charge or p.d left after a certain amount of time for a discharging capacitor

  • This exponential decay means that no matter how much charge is initially on the plates, the amount of time it takes for that charge to halve is the same
  • The exponential decay of current on a discharging capacitor is defined by the equation:

Current Discharge Equation_3

  • Where:
    • I = current (A)
    • I0 = initial current before discharge (A)
    • e = the exponential function
    • t = time (s)
    • RC = resistance (Ω) × capacitance (F) = the time constant τ (s)

  • This equation shows that the smaller the time constant τ, the quicker the exponential decay of the current when discharging
  • Also, how big the initial current is affects the rate of discharge
    • If I0 is large, the capacitor will take longer to discharge

  • Note: during capacitor discharge, I0 is always larger than I, as the current I will always be decreasing

Capacitor Discharge Graph and Equation, downloadable AS & A Level Physics revision notes

Values of the capacitor discharge equation on a graph and circuit

  • The current at any time is directly proportional to the p.d across the capacitor and the charge across the parallel plates
  • Therefore, this equation also describes the charge on the capacitor after a certain amount of time:

Charge Discharge Equation_2

  • Where:
    • Q = charge on the capacitor plates (C)
    • Q0 = initial charge on the capacitor plates (C)

  • As well as the p.d after a certain amount of time:

Voltage Discharge Equation_2

  • Where:
    • V = p.d across the capacitor (C)
    • V0 = initial p.d across the capacitor (C)

The Exponential Function e

  • The symbol e represents the exponential constant, a number which is approximately equal to e = 2.718...
  • On a calculator, it is shown by the button ex
  • The inverse function of ex is ln(y), known as the natural logarithmic function
    • This is because, if ex = y, then x = ln (y)

  • The 0.37 in the definition of the time constant arises as a result of the exponential constant, the true definition is:

The time taken for the charge of a capacitor to decrease to 1 over e of its original value

  • Where 1 over e = 0.3678

Worked example

The initial current through a circuit with a capacitor of 620 µF is 0.6 A. The capacitor is connected across the terminals of a 450 Ω resistor.

Calculate the time taken for the current to fall to 0.4 A.

Current Discharge Equation Worked Example

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Katie M

Author: Katie M

Expertise: Physics

Katie has always been passionate about the sciences, and completed a degree in Astrophysics at Sheffield University. She decided that she wanted to inspire other young people, so moved to Bristol to complete a PGCE in Secondary Science. She particularly loves creating fun and absorbing materials to help students achieve their exam potential.