Sound Waves (SL IB Physics)

Revision Note

Ashika

Author

Ashika

Last updated

Sound Waves

  • Sound waves are longitudinal waves and, as such, require a medium in which to propagate
  • Sound waves are generated by oscillating sources, which produce a change in density of the surrounding medium
  • The sound wave then travels with a series of compressions and rarefactions

 4-2-4-sound-wave-in-air_sl-physics-rn

A sound wave travelling through air

  • Sound waves form a continuous spectrum based on their frequency

 4-2-4-spectrum-of-sound-waves_sl-physics-rn

The spectrum of sound waves

  • Humans can only hear sounds with frequencies in the range 20 Hz - 20 kHz, known as the audible range 
  • Sounds with frequencies below and above this range cannot be detected by the human ear

Pitch & Volume

  • The frequency of a sound wave is related to its pitch
    • Sounds with a high pitch have a high frequency (or short wavelength)
    • Sounds with a low pitch have a low frequency (or long wavelength)

  • The amplitude of a sound wave is related to its volume
    • Sounds with a large amplitude have a high volume
    • Sounds with a small amplitude have a low volume

 4-2-4-pitch-and-volume_sl-physics-rn

Pitch and amplitude of sound

Speed of Sound

  • Sound waves travel at a speed of about 340 m s–1 in air at room temperature
    • The higher the air temperature, the greater the speed of sound
    • The is because the average kinetic energy of the particles is higher

  • Sound travels the fastest through solids, since solid particles are closely packed and can pass the oscillations onto their neighbours much faster
  • Sound travels the slowest in gases, since gas particles are spread out and less efficient in transferring the oscillations to their neighbours

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Ashika

Author: Ashika

Expertise: Physics Project Lead

Ashika graduated with a first-class Physics degree from Manchester University and, having worked as a software engineer, focused on Physics education, creating engaging content to help students across all levels. Now an experienced GCSE and A Level Physics and Maths tutor, Ashika helps to grow and improve our Physics resources.