Faraday’s Law of Induction (DP IB Physics): Revision Note
Faraday’s Law of Induction
Faraday's Law connects the rate of change of magnetic flux linkage with induced e.m.f
It is defined in words as:
The magnitude of an induced e.m.f is directly proportional to the rate of change of magnetic flux linkage
Faraday's Law of induction is defined by the equation:
Where:
= induced e.m.f (V)
= change in magnetic flux linkage (Wb turns)
= time interval (s)
When a coil is completely vertical relative to the magnetic field lines:
The change in magnetic flux linkage is at a maximum - the field lines are travelling through the area of the coil
There is no e.m.f induced - there is no cutting of field lines i.e. there is no change in magnetic flux linkage
When a coil is completely horizontal relative to the magnetic field lines:
The change in magnetic flux linkage is zero - there are no field lines travelling through the area of the coil
Maximum e.m.f is induced - there is the maximum cutting of field lines

Emf induced and the rotation of a coil
Worked Example
A small rectangular coil contains 350 turns of wire. The longer sides are 3.5 cm and the shorter sides are 1.4 cm.

The coil is held between the poles of a large magnet so that the coil can rotate about an axis through its centre. The magnet produces a uniform magnetic field of flux density 80 mT between its poles.
The coil is positioned horizontally and then turned through an angle of 40° over a time interval of 0.18 s.
Calculate the magnitude of the average e.m.f induced in the coil.
Answer:
Step 1: Write down the known quantities
Magnetic flux density, B = 80 mT = 80 × 10-3 T
Area, A = 3.5 × 1.4 = (3.5 × 10-2) × (1.4 × 10-2) = 4.9 × 10-4 m2
Number of turns, N = 350
Angle of rotation, θ = 40°
Time interval, Δt = 0.18 s
Step 2: Write down the equation for Faraday’s law:
Step 3: Write out the equation for the change in flux linkage:
The number of turns N and the coil area A stay constant
The flux through the coil changes as B cos θ as it rotates
Therefore, the equation to use is:
Step 4: Determine the change in magnetic flux linkage
The coil is initially horizontal (θ = 0°) in the field and is rotated by 40°
The initial flux linkage through the coil is:
The final flux linkage through the coil is:
Therefore, the change in flux linkage is:
Step 5: Substitute the change in flux linkage and time into Faraday’s law equation:
Examiner Tips and Tricks
The important point to notice is that an emf is induced in a conductor in a magnetic field if there is change in flux linkage. This means, the conductor (e.g. a coil) must cut through the field lines to have an emf (and hence a current) induced.
You've read 0 of your 5 free revision notes this week
Sign up now. It’s free!
Did this page help you?