Extended Questions (Section B, HL) (DP IB Maths: AA HL)

Exam Questions

3 hours10 questions
1a
Sme Calculator
2 marks

The function f is defined by f open parentheses x close parentheses equals fraction numerator 2 x minus 1 over denominator x squared plus 3 x minus 4 end fraction comma for x element of straight real numbers comma space space x not equal to m comma space space x not equal to n. 

Find the values of m and n.

1b
Sme Calculator
3 marks

Find an expression for f apostrophe open parentheses x close parentheses.

1c
Sme Calculator
2 marks

The graph of  y equals f open parentheses x close parentheses has exactly one point of inflection.

Find the x-coordinate of the point of inflection.

1d
Sme Calculator
4 marks

Sketch the graph of y equals f open parentheses x close parentheses for negative 6 less or equal than x less or equal than 6,  showing the coordinates of any axis intercepts and local maxima and local minima, and giving the equations of any asymptotes.

1e
Sme Calculator
3 marks

The function g is defined by gopen parentheses x close parentheses equals fraction numerator x squared plus 3 x minus 4 over denominator 2 x minus 1 end fraction,  for x element of straight real numbers comma space x not equal to 1 half.

Find the equation of the oblique asymptote of the graph of y equalsg open parentheses x close parentheses.

1f
Sme Calculator
4 marks

By considering the graph of y equals f open parentheses x close parentheses minus g open parentheses x close parentheses comma or otherwise, solve g open parentheses x close parentheses less than f open parentheses x close parentheses for x element of straight real numbers.

Did this page help you?

2a
Sme Calculator
3 marks

The function f has a derivative given by f apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator 3 x open parentheses k minus x close parentheses end fraction comma space x element of straight real numbers comma space x not equal to 0 comma where k is a positive constant.

The expression for f apostrophe open parentheses x close parentheses can be written in the form fraction numerator a over denominator 3 x end fraction plus fraction numerator b over denominator k minus x end fraction  where p comma space q element of straight real numbers. Find a  and b in terms of k.

2b
Sme Calculator
3 marks

Hence find an expression for f open parentheses x close parentheses.

2c
Sme Calculator
7 marks

R is the population of rabbits on an island. The rate of change of the population can be modelled by the differential equation fraction numerator d R over denominator d t end fraction equals fraction numerator 3 R open parentheses k minus R close parentheses over denominator 4 k end fraction,  where t is the time measured in years, t greater or equal than 0,  and k is the maximum population that the island can support. 

The initial population of the rabbits is 20. 

By solving the differential equation, show that  R equals fraction numerator 20 k e to the power of 3 over 4 t end exponent over denominator k minus 20 plus 20 e to the power of 3 over 4 t end exponent end fraction

2d
Sme Calculator
3 marks

After two years, the population of rabbits has risen to 70.

Find k.

2e
Sme Calculator
2 marks

Find the value of t at which the population of rabbits is growing at its fastest rate.

Did this page help you?

3a
Sme Calculator
6 marks

A particle is moving in a vertical line and its acceleration, in ms to the power of negative 2 end exponent , at time t seconds, t greater or equal than 0 is given by a equals negative fraction numerator 1 minus v over denominator 2 end fraction comma where v is the velocity in meters per second and v less than 1.

The particle starts at a fixed origin O with initial velocity v subscript o space ms to the power of negative 1 end exponent.

By solving a suitable differential equation, show that the particle’s velocity at time t is given by v open parentheses t close parentheses equals 1 minus e to the power of negative t over 2 end exponent open parentheses 1 minus v subscript o close parentheses.

3b
Sme Calculator
4 marks

The particle moves down in the negative direction, until its displacement relative to the origin reaches a minimum. Then the particle changes direction and starts moving up, in a positive direction. 

(i)
If the initial velocity of the particle is negative 3 space ms to the power of negative 1 end exponent, find the time at which the minimum displacement of the particle from the origin occurs, giving your answer in exact form.

(ii)
If T is the time in seconds when the displacement reaches its smallest value, show that T equals 2 space ln open parentheses 1 minus v subscript o close parentheses.
3c
Sme Calculator
5 marks
(i)
Find a general expression for the displacement, in terms of t and v subscript o.

(ii)
Combine this general expression with the result from part (b)(ii) to find an expression for the minimum displacement of the particle in terms of v subscript o.
3d
Sme Calculator
5 marks

Let v open parentheses T minus k close parentheses represent the particle’s velocity k seconds before the minimum displacement and v open parentheses T plus k close parentheses the particle’s velocity k seconds after the minimum displacement. 

(i)
Show that v open parentheses T minus k close parentheses equals 1 minus e to the power of begin inline style k over 2 end style end exponent.

(ii)
Given that v open parentheses T plus k close parentheses equals 1 minus e to the power of negative k over 2 end exponent comma show that v open parentheses T minus k close parentheses plus v open parentheses T plus k close parentheses greater or equal than 0.

Did this page help you?

4a
Sme Calculator
5 marks

The diagram below shows the graph of f open parentheses x close parentheses equals arctan open parentheses x close parentheses comma space x element of straight real numbers. The graph has rotational symmetry of order 2 about the origin.

mi-q12a-ib-aa-hl-pp1-set-c-maths-dig

A different function, g, is described by gopen parentheses x close parentheses equals negative arctan open parentheses x minus 1 close parentheses comma space x element of straight real numbers.

(i)
Describe the sequence of transformations that transforms f open parentheses x close parenthesesto gopen parentheses x close parentheses.

(ii)
Sketch the graph of  gopen parentheses x close parentheses on the axes above.

(iii)
Using your answers to parts (i) and (ii) to help you, describe the relationship between integral subscript 0 superscript 1 arctan open parentheses x close parentheses d xand integral subscript 0 superscript 1 minus arctan open parentheses x minus 1 close parentheses d x. .

4b
Sme Calculator
6 marks
(i)
Prove that  arctan space p minus arctan space q equals arctan open parentheses fraction numerator p minus q over denominator 1 plus p q end fraction close parentheses.

(ii)      Show that arctan open parentheses fraction numerator 1 over denominator x squared minus x plus 1 end fraction close parenthesescan be written as arctan open parentheses x close parentheses minus arctan open parentheses x minus 1 close parentheses.

4c
Sme Calculator
7 marks

Using the results from parts (a) and (b), evaluate integral subscript 0 superscript 1 arctan open parentheses fraction numerator 1 over denominator x squared minus x plus 1 end fraction close parentheses d x commaleaving your answer in exact form.

Did this page help you?

5a
Sme Calculator
6 marks

Paola is modelling a small vase from her house for her maths project. To model the edge of the vase in cross-section, she decides to use a function f of the form

f open parentheses x close parentheses equals fraction numerator q straight e to the power of x over 2 end exponent over denominator 2 plus straight e to the power of x end fraction

 

where x element of straight real numbers comma space x greater or equal than 0 and q element of straight real numbers to the power of plus

The function and the vase are represented in the diagrams below.

mi-q11a-ib-aa-sl-pp2-set-c-maths-dig1

mi-q11a-ib-aa-sl-pp2-set-c-maths-dig2



The vertical height of the vase, OB, is measured along the x-axis. The radius of the vase’s opening is OA, and its base radius is BC. 

To model the vase, she will rotate by 2 pi radians about the x-axis the region enclosed by the graph of y equals f open parentheses x close parentheses ,  the x-axis, the y-axis, and the line x equals ln space 43

Show that the volume of the solid of revolution thus formed is fraction numerator 14 q squared straight pi over denominator 45 end fraction units cubed.

5b
Sme Calculator
2 marks

The volume of the actual vase is 100 cm cubed.

Use this information to find the value of q.

5c
Sme Calculator
4 marks

Find the cross-sectional radius of the vase

(i)     at its base,

(ii)    at its widest point.

5d
Sme Calculator
4 marks

Paola wants to investigate how the cross-sectional radius of the vase changes.

Sketch a graph of the derivative of f, and use it to find the value of x at which the cross-sectional radius of the vase is decreasing most rapidly.

Did this page help you?

1a
Sme Calculator
3 marks

The points A(2, 3, 0), B(-2, 4, 1), C(1, -1, 3) and D(5, -2, 2) lie on the plane capital pi subscript 1 and form a parallelogram, where AB and CD are one pair of parallel edges and BC and AD are the other pair of parallel edges. Each unit on the coordinate grid is equivalent to 1 cm in length.

Find the vector product of AB with rightwards arrow on top and AC with rightwards arrow on top.

1b
Sme Calculator
2 marks

Hence, or otherwise, find the Cartesian equation of the plane capital pi subscript 1.

1c
Sme Calculator
4 marks

A second plane capital pi subscript 2 contains the point with position vector open parentheses table row 5 row cell negative 3 end cell row 5 end table close parentheses and also the line L, which has vector equation bold space bold italic r equals space open parentheses table row 6 row 1 row 2 end table close parentheses plus lambda open parentheses table row 4 row cell negative 1 end cell row cell negative 1 end cell end table close parentheses.

Show that capital pi subscript 1 and capital pi subscript 2are parallel.

1d
Sme Calculator
3 marks

A parallelepiped is a 3D object made up of six faces that are parallelograms lying in pairs of parallel planes.  EFGH is a parallelogram on capital pi subscript 2 that is congruent to ABCD, and points A, B, C and D on capital pi subscript 1 are joined to points E, F, G and H respectively on capital pi subscript 2 to form a parallelepiped.

Given that the coordinates of E are (3, 6, 0), find the coordinates of point H.

1e
Sme Calculator
5 marks

The volume of a parallelepiped can be found using the formula open vertical bar open parentheses bold italic a cross times bold italic b close parentheses. bold italic c close vertical bar where bold italic a comma space bold italic b and bold italic c  are vectors corresponding to three edges meeting at a single vertex of the parallelepiped.

Show that the volume of the parallelepiped ABCDEFGH is 40 cm3

Did this page help you?

2a
Sme Calculator
1 mark

A function g is defined by g open parentheses x close parentheses equals arccos open parentheses fraction numerator x squared minus 1 over denominator x squared plus 1 end fraction close parentheses comma space x element of straight real numbers. 

Show that g is an even function.

2b
Sme Calculator
2 marks

By considering the limit of g as x tends to infinity, show that the graph of  y equals g open parentheses x close parentheses has a horizontal asymptote and state its equation.

2c
Sme Calculator
9 marks
(i)
Show that  g to the power of apostrophe open parentheses x close parentheses equals fraction numerator negative 2 x over denominator open parentheses square root of x squared end root close parentheses open parentheses x squared plus 1 close parentheses end fraction for x element of straight real numbers comma space x greater or equal than 0.

 

(ii)
Considering the fact that square root of x squared end root equals open vertical bar x close vertical bar commaand also the expression for g to the power of apostrophe open parentheses x close parentheses above, show that g is increasing for x less than 0.
2d
Sme Calculator
5 marks

A new function, h, is created by restricting the domain of g, such that h open parentheses x close parentheses equals arccos open parentheses fraction numerator x squared minus 1 over denominator x squared plus 1 end fraction close parentheses comma space x element of straight real numbers comma space x greater or equal than 0.,  ,  .

Find an expression for h to the power of negative 1 end exponent open parentheses x close parentheses, carefully considering the range of h in determining your final answer.

2e
Sme Calculator
2 marks

State the domain of h to the power of negative 1 end exponent open parentheses x close parentheses.

Did this page help you?

3a
Sme Calculator
2 marks

The function f is defined by f open parentheses x close parentheses equals fraction numerator 4 x plus 3 over denominator 9 x squared minus 4 end fraction,  for x element of straight real numbers comma space x not equal to p comma space x not equal to q. 

Given that p less than q ,  find the value of p and the value of q.

3b
Sme Calculator
3 marks

Find an expression for f to the power of apostrophe open parentheses x close parentheses.

3c
Sme Calculator
2 marks

The graph of y equals f open parentheses x close parentheses has exactly one point of inflection. 

Find the x-coordinate of the point of inflection.

3d
Sme Calculator
5 marks

Sketch the graph of y equals f open parentheses x close parentheses for negative 3 less or equal than x less or equal than 3 commashowing the values of any axes intercepts, the coordinates of any local maxima and local minima, and giving the equations of any asymptotes.

3e
Sme Calculator
4 marks

The function g is defined by g open parentheses x close parentheses equals fraction numerator 9 x squared minus 4 over denominator 4 x plus 3 end fraction comma for x element of straight real numbers comma space x not equal to negative 3 over 4

Find the equations of all the asymptotes on the graph of  y equals g open parentheses x close parentheses.

3f
Sme Calculator
4 marks

By considering the graph of y equals f open parentheses x close parentheses minus g open parentheses x close parentheses comma or otherwise, solve f open parentheses x close parentheses less than g open parentheses x close parentheses for x element of straight real numbers.

Did this page help you?

4a
Sme Calculator
3 marks

The derivative of the function f is given by f apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator x open parentheses k minus x close parentheses end fraction comma space x element of straight real numbers comma space x not equal to 0 comma space x not equal to k comma where k greater than 0 is a real constant. 

By finding appropriate constants a and b in terms of k, show that the expression for f apostrophe open parentheses x close parenthesescan be written in the form a over x plus fraction numerator b over denominator k minus x end fraction comma where a comma b element of straight real numbers.

4b
Sme Calculator
3 marks

Hence find an expression for f open parentheses x close parentheses.

4c
Sme Calculator
8 marks

Consider a population of lizards, P, which has an initial size of 800. The rate of change of the population can be modelled by the differential equation fraction numerator d P over denominator d t end fraction equals fraction numerator P open parentheses k minus P close parentheses over denominator 25 k end fraction,  where t is the time measured in years, t greater or equal than 0 comma and k is the maximum sustainable population. 

By solving the differential equation, show that

P equals fraction numerator 800 k over denominator open parentheses k minus 800 close parentheses e to the power of negative t over 25 end exponent plus 800 end fraction

4d
Sme Calculator
3 marks

At t equals 12 the lizard population has reduced in size to three fourths of its original value. 

Find the value of k, giving your answer correct to four significant figures.

4e
Sme Calculator
3 marks

Find the value of t when the population is decreasing at a rate of 16 lizards per year.

Did this page help you?

5a
Sme Calculator
3 marks

A mathematical function f is defined by f open parentheses x close parentheses equals x e to the power of 2 x end exponent.

Show that f apostrophe apostrophe open parentheses x close parentheses equals open parentheses 4 x plus 4 close parentheses e to the power of 2 x end exponent.

5b
Sme Calculator
7 marks

Prove by mathematical induction that if f open parentheses x close parentheses equals x e to the power of 2 x end exponent then f to the power of open parentheses n close parentheses end exponent open parentheses x close parentheses equals open parentheses 2 to the power of n x plus n 2 to the power of n minus 1 end exponent close parentheses e to the power of 2 x end exponent.

5c
Sme Calculator
7 marks

Let  g open parentheses x close parentheses equals ln open parentheses 1 plus m x close parentheses comma space m element of Z to the power of plus. 

Consider the function h defined by h open parentheses x close parentheses equals f open parentheses x close parentheses cross times g open parentheses x close parentheses.

Given that the term in x to the power of 4 of the Maclaurin series for h open parentheses x close parentheses has coefficient 6, find the value of m.

Did this page help you?