Inequalities (DP IB Maths: AA HL)

Exam Questions

3 hours28 questions
1a
Sme Calculator
3 marks

Consider the functionsspace f left parenthesis x right parenthesis equals 3 x squared plus x minus 2 and g left parenthesis x right parenthesis equals negative 2 x squared plus 3 x plus 5.

a)
Sketch the graph of the functionspace f left parenthesis x right parenthesis on the axes provided, labelling the vertex as well as the x- and y-intercepts.
q1a_2-8_medium_ib-aa-hl-maths     
1b
Sme Calculator
4 marks
b)
Solve the inequality f left parenthesis x right parenthesis less than g left parenthesis x right parenthesis.

Did this page help you?

2
Sme Calculator
4 marks

Solve the inequality 5 x squared minus 8 x minus 48 greater or equal than 2 x squared plus 4 x minus 12.

Did this page help you?

3a
Sme Calculator
2 marks

Consider the inequality  fraction numerator x squared minus 3 x minus 10 over denominator x minus 1 end fraction less than 0.

a)
Explain why you need to consider the cases x less than 1 comma x equals 1 and x greater than 1 separately when rearranging the inequality to find a solution. 

  

3b
Sme Calculator
5 marks
b)
Solve the inequality.

Did this page help you?

4a
Sme Calculator
2 marks

The functions and are defined such that begin mathsize 16px style f left parenthesis x right parenthesis equals fraction numerator x plus 4 over denominator 2 x minus 1 end fraction end style and g left parenthesis x right parenthesis equals 2 x minus 4

Given that space f has the largest possible valid domain, 

a)
State the domain and range of space f.
4b
Sme Calculator
4 marks
b)
Solve the inequalityspace f left parenthesis x right parenthesis less or equal than g left parenthesis x right parenthesis.

Did this page help you?

5a
Sme Calculator
3 marks

Consider the function f left parenthesis x right parenthesis equals negative 2 space sin space x in the interval negative 2 pi less or equal than x less or equal than 2 pi.

a)
Sketch a graph of the function over the given interval on the axes provided, labelling all x-intercepts as well as local minima and maxima. q5a_2-8_medium_ib-aa-hl-maths
5b
Sme Calculator
4 marks
b)
Solve the inequalityspace f left parenthesis x right parenthesis greater than 1.

Did this page help you?

6
Sme Calculator
4 marks

Solve the inequality begin mathsize 16px style fraction numerator 3 x minus 2 over denominator 5 end fraction plus 3 greater than fraction numerator 4 x minus 4 over denominator 5 end fraction end style

Did this page help you?

7a
Sme Calculator
4 marks

Consider the functionsf left parenthesis x right parenthesis equals x squared minus 9 plus 4 over x and g left parenthesis x right parenthesis equals negative x plus 5. space

a)
Sketch the graphs of space f left parenthesis x right parenthesis and g left parenthesis x right parenthesis, clearly labelling any points of intersection or asymptotes. 
7b
Sme Calculator
3 marks
b)
Determine the values of x such that space f left parenthesis x right parenthesis greater or equal than g left parenthesis x right parenthesis.

Did this page help you?

8a
Sme Calculator
4 marks

Consider two functions, f left parenthesis x right parenthesis equals ln left parenthesis x plus 3 right parenthesis plus 4 and g left parenthesis x right parenthesis equals e to the power of x minus 3 end exponent. 

a)
Sketch both functions on the axes below, clearly labelling the asymptotes and points of intersection.

q8a_2-8_medium_ib-aa-hl-maths
8b
Sme Calculator
2 marks
b)
Hence or otherwise, solve the inequalityspace f left parenthesis x right parenthesis greater or equal than g left parenthesis x right parenthesis.

Did this page help you?

9a
Sme Calculator
4 marks

Consider the polynomial q left parenthesis x right parenthesis equals x cubed minus 8 x squared plus 19 x minus 12. 

a)
Given that left parenthesis x minus 4 right parenthesis is a factor of q left parenthesis x right parenthesis, determine the x-intercepts of q left parenthesis x right parenthesis.
9b
Sme Calculator
3 marks
b)
Hence or otherwise, solve the inequality x cubed plus 19 x less or equal than 8 x squared plus 12.

Did this page help you?

10
Sme Calculator
3 marks

Consider the two functionsspace f left parenthesis x right parenthesis equals 2 space sin invisible function application 2 x and g left parenthesis x right parenthesis equals cos space x comma both having the domain 0 less or equal than x less or equal than 2 pi. 

Solve the inequality f left parenthesis x right parenthesis greater or equal than g left parenthesis x right parenthesis.

Did this page help you?

1a
Sme Calculator
2 marks
(a)
Sketch the graph of the function f open parentheses x close parentheses equals x open parentheses x minus 2 close parentheses open parentheses x minus 4 close parentheses squared.
Mark your sketch clearly with the x-coordinates of the x-axis intercepts.
1b
Sme Calculator
1 mark
(b)
Write down the solution to the inequality f open parentheses x close parentheses less or equal than 0.

 

1c
Sme Calculator
2 marks
(c)
Briefly explain how the graph shows that there are no real solutions to the inequality f open parentheses x close parentheses plus 10 less or equal than 0.

Did this page help you?

2
Sme Calculator
4 marks

Consider the function defined by g left parenthesis x right parenthesis equals e to the power of negative open vertical bar x close vertical bar end exponent.

(i)
Sketch the graph of y equals g open parentheses x close parentheses.
(ii)

Solve the inequality g open parentheses x close parentheses greater or equal than 0.5 using exact values.

Did this page help you?

3a
Sme Calculator
2 marks

Consider the function f left parenthesis x right parenthesis equals 6 x cubed minus 19 x squared plus 16 x minus 4.

(a)
Fully factorise f open parentheses x close parentheses.
3b
Sme Calculator
4 marks
(b)
Solve
(i)
f open parentheses x close parentheses less than 0
(ii)
f open parentheses 2 x close parentheses less than 0
(iii)
f open parentheses x minus 3 close parentheses less than 0
(iv)
open vertical bar f open parentheses x minus 3 close parentheses close vertical bar less or equal than 0

Did this page help you?

4
Sme Calculator
4 marks

Find the values of k such that the equation k x equals k x squared plus k minus 2 has real solutions and the equation open parentheses 4 k minus 3 close parentheses x squared plus 2 k x plus 1 equals 0 has no real solutions.

 

Did this page help you?

5a
Sme Calculator
3 marks
(a)
Giving answers to three significant figures, find the set of values of x that satisfy
open vertical bar sin open parentheses 2 x to the power of degree close parentheses close vertical bar greater or equal than 1 minus x over 360 
for 0 less or equal than x less or equal than 360.
5b
Sme Calculator
1 mark
(b)
Explain how your answer to part (a) would differ if the domain of x was changed from 0 less or equal than x less or equal than 360 to x element of straight real numbers.

 

Did this page help you?

6a
Sme Calculator
1 mark
(a)
Write down the set of values of x for which e to the power of 2 x end exponent less or equal than e to the power of x.
6b
Sme Calculator
2 marks
(b)
Find the set of values of x for which 

          (i)    e to the power of 2 open parentheses x minus 4 close parentheses end exponent less or equal than e to the power of x minus 4 end exponent 

          (ii)    e to the power of 5 open parentheses x minus 4 close parentheses end exponent greater or equal than e to the power of negative open parentheses x minus 4 close parentheses end exponent

 

6c
Sme Calculator
2 marks
(c)
Find the set of values of x for which
(i)
2 ln left parenthesis x minus 4 right parenthesis less or equal than ln left parenthesis x minus 4 right parenthesis
(ii)
negative ln left parenthesis x minus 4 right parenthesis greater or equal than 5 ln left parenthesis x minus 4 right parenthesis.

Did this page help you?

7a
Sme Calculator
4 marks

Consider the functions

f open parentheses x close parentheses equals fraction numerator a over denominator a minus x end fraction and g open parentheses x close parentheses equals fraction numerator 2 a over denominator x minus 2 a end fraction 

where a is real constant such that a not equal to 0. 

(a)  In terms of the constant a, find 

          (i)     the values of x for which f open parentheses x close parentheses and g open parentheses x close parentheses are undefined, 

          (ii)    the x-coordinate of any intersections between the graphs of y equals f open parentheses x close parentheses and y equals g open parentheses x close parentheses.

7b
Sme Calculator
3 marks
(b)
In the case a greater than 0, find the set of values of x in terms of a for which 

          (i)     f open parentheses x close parentheses greater than g open parentheses x close parentheses

          (ii)    f open parentheses x close parentheses less than g open parentheses x close parentheses.

7c
Sme Calculator
2 marks
(c)
Repeat questions (b) (i) and (ii) in the case a less than 0.

Did this page help you?

8a
Sme Calculator
3 marks

f left parenthesis x right parenthesis equals x cubed minus 11 x squared plus 40 x minus 48

(a)
(i)
Show that x equals 3 is a root of the function .
(ii)

Hence fully factorise f open parentheses x close parentheses.

8b
Sme Calculator
3 marks
(b)
Solve the inequality x cubed minus 10 x squared plus 32 x minus 32 less or equal than left parenthesis x minus 4 right parenthesis squared.
8c
Sme Calculator
2 marks
(c)
Solve the inequality open parentheses x plus a close parentheses open parentheses x plus b close parentheses squared greater than 0, where a and b are constants such that a greater than b greater than 0.  Give your answers in terms of a and b.

 

Did this page help you?

9a
Sme Calculator
3 marks
(a)
Consider the functions defined by  f open parentheses x close parentheses equals x squared minus a and g open parentheses x close parentheses equals a minus x squared,  where a is a positive constant. Solve the inequality f open parentheses x close parentheses less than g open parentheses x close parentheses,  giving your answer in terms of a.
9b
Sme Calculator
2 marks
(b)
Consider the functions defined by  p open parentheses x close parentheses equals x cubed minus b and  q open parentheses x close parentheses equals b minus x cubed,  where b is a real constant. Solve the inequality p open parentheses x close parentheses less than q open parentheses x close parentheses,  giving your answer in terms of b.

 

9c
Sme Calculator
3 marks
(c)
Consider the functions defined by h open parentheses x close parentheses equals x to the power of n minus m and j open parentheses x close parentheses equals m minus x to the power of n,  where m greater than 0
and n element of straight integer numbers to the power of plus. Write down, in terms of m and n, the solution to the inequality h open parentheses x close parentheses less than j open parentheses x close parentheseswhen
(i)
n is even,
(ii)
n is odd.

Did this page help you?

10
Sme Calculator
3 marks

Consider the functions defined by f open parentheses x close parentheses equals a plus ln space b x and g open parentheses x close parentheses equals a minus ln space b x where a and b are positive constants. Show that

f left parenthesis x right parenthesis less than g left parenthesis x right parenthesis for  0 less than x less than 1 over b.   .

Did this page help you?

1
Sme Calculator
4 marks

Consider the functions defined by f left parenthesis x right parenthesis equals x squared minus 6 a x plus b plus 10 and g left parenthesis x right parenthesis equals a x plus 2 b plus 3 commawhere a comma b element of Z to the power of plus. Given that f left parenthesis x right parenthesis less or equal than g left parenthesis x right parenthesis only for space 2 less or equal than x less or equal than 5 comma find the values of a and b.

 

Did this page help you?

2a
Sme Calculator
3 marks

The function defined by f left parenthesis x right parenthesis equals x to the power of 4 minus 12 x cubed plus 46 x squared minus 60 x plus 25 can be factorised into the form f left parenthesis x right parenthesis equals left parenthesis x minus a right parenthesis squared left parenthesis x minus b right parenthesis squared comma where a and b are positive integers such that a less than b.

(a)
Find the values of a and b.
2b
Sme Calculator
3 marks
(b)
Determine the set of values of that satisfy
(i)
f open parentheses x close parentheses greater or equal than 0,
(ii)
f open parentheses negative x close parentheses greater or equal than 0 comma
(iii)
negative f open parentheses x close parentheses less than 0.
2c
Sme Calculator
2 marks
(c)
Determine the smallest positive value k such that the solution to the inequality f open parentheses x close parentheses less or equal than k  is a single interval.

 

Did this page help you?

3
Sme Calculator
5 marks

The function f is such that 

 f left parenthesis x right parenthesis greater or equal than 0 space space for space space x less or equal than 3 space space and space for space space 4 less or equal than x less or equal than 5 comma

f left parenthesis x right parenthesis less or equal than 0 space space for space space 3 less or equal than x less or equal than 4 space space and space for space space x greater or equal than 5.

Find a polynomial, of the lowest degree possible, that satisfies the condition f open parentheses 0 close parentheses equals 5.

Did this page help you?

4a
Sme Calculator
3 marks
(a)
Sketch the graph of y equals f open parentheses x close parentheses where
f left parenthesis x right parenthesis equals fraction numerator left parenthesis x plus 2 right parenthesis left parenthesis x minus 4 right parenthesis left parenthesis x minus 6 right parenthesis over denominator left parenthesis x minus 1 right parenthesis left parenthesis x minus 5 right parenthesis end fraction    
       
Label any intersections with the coordinate axes and state the equations of any vertical asymptotes.
4b
Sme Calculator
5 marks
(b)
Find the values of  x that satisfy
(i)
f left parenthesis x right parenthesis greater or equal than 0. space space space
(ii)
f left parenthesis vertical line x vertical line right parenthesis greater or equal than 0.

 

Did this page help you?

5
Sme Calculator
6 marks

The region R is defined by the three straight lines given by the inequalities

y greater or equal than 1 comma space

y less or equal than 2 x plus 8 comma space

x plus y less or equal than 10.

The function f is defined by f open parentheses x close parentheses equals 2 plus fraction numerator 1 over denominator x minus 1 end fraction. Find the largest domain of f such that the graph of f lies within the region R. Give answers as exact values where appropriate.

Did this page help you?

6a
Sme Calculator
1 mark
(a)
Consider the graphs with equations
y equals fraction numerator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses over denominator x minus 1 end fraction and space y equals 6 minus x
Explain why the two graphs do not intersect.
6b
Sme Calculator
3 marks
(b)
Consider the graphs with equations
y equals fraction numerator open parentheses x minus 6 close parentheses open parentheses x minus 1 close parentheses squared over denominator x minus 1 end fraction space and space y equals open parentheses 8 minus x close parentheses open parentheses x minus 1 close parentheses.
(i)

Find the coordinates of any points of intersections between the two graphs.

(ii)

Hence, or otherwise, solve the inequality

fraction numerator open parentheses x minus 6 close parentheses open parentheses x minus 1 close parentheses squared over denominator x minus 1 end fraction less or equal than open parentheses 8 minus x close parentheses open parentheses x minus 1 close parentheses.

Did this page help you?

7a
Sme Calculator
3 marks

Consider the functions defined by f left parenthesis x right parenthesis equals square root of left parenthesis 9 minus x squared right parenthesis end root comma space g left parenthesis x right parenthesis equals 3 minus square root of left parenthesis 9 minus x squared right parenthesis end root and h open parentheses x close parentheses equals fraction numerator x plus 3 over denominator 2 end fraction.All three functions have the domain negative 3 less or equal than x less or equal than 3. 

(a)
On the same diagram, sketch the graphs of f comma space g spaceand h.
7b
Sme Calculator
3 marks
(b)
Find the set of values of x which satisfy the inequality f left parenthesis x right parenthesis greater than g left parenthesis x right parenthesis greater than h left parenthesis x right parenthesis.

Did this page help you?

8
Sme Calculator
6 marks

Find the exact values for x such that

fraction numerator x over denominator open parentheses x plus 2 close parentheses open parentheses x minus 3 close parentheses end fraction greater or equal than x

 

Did this page help you?