Complex Numbers (DP IB Maths: AA HL)

Exam Questions

4 hours33 questions
1a
Sme Calculator
2 marks

Consider the complex numbers z subscript 1 equals 2 plus 2 straight i and z subscript 2 equals 2 plus 2 square root of 3 straight i.

Sketch z subscript 1 and z subscript 2 on the Argand diagram below, be sure to include an appropriate scale.

q1a_1-8_complex-numbers_medium_ib-maths-aa-hl

 

1b
Sme Calculator
3 marks

Find the modulus of z subscript 1and z subscript 2.

1c
Sme Calculator
3 marks

Find the argument of z subscript 1and z subscript 2.

Did this page help you?

2
Sme Calculator
7 marks

Solve the following equations for x

(i)
x squared plus 4 x plus 5 equals 0

(ii)
x squared equals negative 625

(iii)
x to the power of 4 equals 24 space minus space 2 x squared.

Did this page help you?

3a
Sme Calculator
2 marks

Let w subscript 1 equals z subscript 1 z subscript 2, where z subscript 1 equals 5 plus straight i and z subscript 2 equals 1 plus 2 straight i.

Express w in the form w equals a plus b straight i.

3b
Sme Calculator
4 marks

Find the modulus and argument for w

Did this page help you?

4a
Sme Calculator
3 marks

Let z equals w subscript 1 over w subscript 2, where w subscript 1 equals 4 minus straight i and w subscript 2 equals 1 minus 2 straight i.

Express z in the form z equals a plus b straight i.

4b
Sme Calculator
4 marks

Find the modulus and argument for z.

Did this page help you?

5a
Sme Calculator
2 marks

Consider the complex numbers z equals 3 minus 4 straight i and w equals 7 minus 2 straight i.

Find 

(i)
z plus w

(ii)
w minus z.

5b
Sme Calculator
2 marks

Let z to the power of asterisk timesand w to the power of asterisk timesrepresent the complex conjugates of z and w, respectively.

Write down z to the power of asterisk timesand w to the power of asterisk times, giving your answers in the form a plus b straight i.

5c
Sme Calculator
4 marks

Find

(i)
z to the power of asterisk times w

(ii)
w to the power of asterisk times over z.

Did this page help you?

6
Sme Calculator
7 marks

Find all possible real values for a and b such that 

(i)
a plus b straight i equals 8 straight i

(ii)
open parentheses 2 plus 3 straight i close parentheses open parentheses a plus b straight i close parentheses equals 13

(iii)
open parentheses a plus straight i close parentheses open parentheses 2 plus b straight i close parentheses equals negative 6 plus 22 straight i.

Did this page help you?

7
Sme Calculator
7 marks

Consider the complex numbers w equals straight i z and w plus 2 z equals 7 plus 6 straight i.

Find

(i)
Re left parenthesis w right parenthesis

(ii)
Im left parenthesis w right parenthesis

(iii)
Re left parenthesis z right parenthesis

(iv)
Im left parenthesis z right parenthesis.

Did this page help you?

8
Sme Calculator
7 marks

It is given that z subscript 1 equals 3 plus 4 straight i and z subscript 2 equals negative 2 plus 2 straight i.

Find

(i)
straight i z subscript 1 plus z subscript 2

(ii)
fraction numerator z subscript 1 over denominator straight i z subscript 2 end fraction

(iii)
straight i left parenthesis z subscript 1 z subscript 2 right parenthesis.

Did this page help you?

9
Sme Calculator
8 marks

Find the complex numbers z and w such that 

2 z minus straight i w to the power of asterisk times equals 5 plus 7 straight i 

w plus straight i z to the power of asterisk times equals 5 plus 16 straight i

Did this page help you?

10a
Sme Calculator
5 marks

Let z equals 3 plus 8 straight i and w equals 4 minus 4 straight i.

Find theta, the angle shown on the diagram below.

q10a_1-8_complex-numbers_medium_ib-maths-aa-hl

10b
Sme Calculator
3 marks

Find the area of the triangle formed in the diagram above.

Did this page help you?

11a
Sme Calculator
2 marks

Let z equals negative 1 minus 3 straight i and w equals 1 plus straight i.

Find z w.

11b
Sme Calculator
3 marks

Sketch z comma w space and space space z w spaceon the Argand diagram below.

q11b_1-8_complex-numbers_medium_ib-maths-aa-hl

11c
Sme Calculator
4 marks

Let theta be the angle between z and z w and ϕ be the angle between w and z w.

Find the angles theta and ϕ, giving your answers in degrees.

Did this page help you?

12a
Sme Calculator
4 marks

Let w equals fraction numerator z plus 1 over denominator z to the power of asterisk times plus 1 end fraction, where z equals a plus b straight i comma space a comma space b element of straight real numbers.

Write w in the form x plus y straight i comma space x comma space y element of straight real numbers. space

12b
Sme Calculator
3 marks

Determine the conditions under which w is purely imaginary.

Did this page help you?

1a
Sme Calculator
3 marks

Consider the quadratic equation z squared minus 8 z plus 25 equals 0 comma space z element of straight complex numbers

The roots of the equation are  z subscript 1 equals a plus b straight i  and  z subscript 2 equals a minus b straight i where a comma b element of straight integer numbers. 

Find the value of a and b.

1b
Sme Calculator
4 marks

Sketch z subscript 1 comma space z subscript 2 comma space z subscript 1 plus z subscript 2and z subscript 1 minus z subscript 2 on the Argand diagram below, be sure to include an appropriate scale.

q1b-1-8-ib-aa-hl-complex-numbers-hard-maths_dig

Did this page help you?

2
Sme Calculator
7 marks

Consider the complex numbers  z subscript 1 equals negative 3 plus 2 straight i and z subscript 2 equals 1 minus 3 straight i.

Find

(i)
z subscript 1 plus z subscript 2
(ii)
z subscript 1 minus z subscript 2
(iii)
z subscript 1 z subscript 2
(iv)
z subscript 1 over z subscript 2

Did this page help you?

3
Sme Calculator
7 marks

Consider the complex numbers z subscript 1 equals 3 minus straight i and  z subscript 2 equals negative 2 minus 3 straight i. 

Find the modulus and argument of z subscript 1 z subscript 2 to the power of asterisk times.

Did this page help you?

4a
Sme Calculator
6 marks

Consider the complex numbers z subscript 1 equals 1 minus 2 straight i and z subscript 2 equals negative 3 plus 5 straight i.   

Work out the following:

(i)
Re open parentheses straight z subscript 2 minus straight z subscript 1 close parentheses
(ii)
Im open parentheses z subscript 1 z subscript 2 close parentheses
(iii)
open parentheses z subscript 1 over z subscript 2 close parentheses to the power of asterisk times

For part (iii) give your answer in the form a plus b straight i,  where a and b are real numbers.

4b
Sme Calculator
2 marks

Write down the complex conjugate of z subscript 2 and describe the geometrical relationship between z subscript 2 and z subscript 2 to the power of asterisk times.

Did this page help you?

5
Sme Calculator
7 marks

Find all possible real values for a and b such that

(i)
open parentheses a plus b straight i close parentheses open parentheses 2 minus 3 straight i close parentheses equals 8 plus straight i
(ii)
a open parentheses 2 plus b straight i close parentheses equals b open parentheses negative 6 plus straight i close parentheses
(iii)
open parentheses 2 a plus 3 straight i close parentheses open parentheses 3 plus b straight i close parentheses equals 12 plus 21 straight i

Did this page help you?

6a
Sme Calculator
3 marks

For a general complex number z equals x plus straight i y,  where x comma y element of straight real numbers,  show that

(i)
Re open parentheses z close parentheses equals fraction numerator z plus z italic asterisk times over denominator 2 end fraction
(ii)
Im open parentheses z close parentheses equals fraction numerator z minus z to the power of asterisk times over denominator 2 straight i end fraction

 

6b
Sme Calculator
6 marks

For the complex numbers z subscript 1 equals a subscript 1 plus b subscript 1 straight i and z subscript 2 equals a subscript 2 plus b subscript 2 straight i,  where  a subscript 1 comma space a subscript 2 comma space b subscript 1 comma space b subscript 2 element of straight real numbers, show that

open vertical bar z subscript 1 z subscript 2 close vertical bar equals open vertical bar z subscript 1 close vertical bar open vertical bar z subscript 2 close vertical bar

Did this page help you?

7
Sme Calculator
8 marks

Consider the complex numbers w equals 2 straight i z and w minus z equals 5 minus 5 straight i.

Find

(i)
open vertical bar z close vertical bar
(ii)
arg space w
(iii)
Re open parentheses z plus w close parentheses
(iv)
Im open parentheses z minus w close parentheses

Did this page help you?

8a
Sme Calculator
4 marks

Consider the complex numbers z subscript 1 equals a minus 6 straight i comma space straight z subscript 2 equals 1 plus b straight i and z subscript 1 z subscript 2 equals negative 17 minus 9 straight i where a comma space b element of straight real numbers

Find the possible values of a and b.

8b
Sme Calculator
2 marks

Using the answers gained in part (a), write down values for c and d that will satisfy the equation

negative open parentheses 3 plus straight i close parentheses open parentheses c plus d straight i close parentheses equals 17 minus 9 straight i

Did this page help you?

9a
Sme Calculator
2 marks

Consider the complex numbers z equals 3 plus 5 straight i space and space w equals negative 2 plus 3 straight i

Represent the complex numbers z and w on an Argand diagram.

9b
Sme Calculator
5 marks

The points z plus w and z minus w are represented by the points straight A and straight B on the Argand diagram respectively.

Find the angle straight A straight O with hat on top straight B.

Did this page help you?

10a
Sme Calculator
4 marks

Consider the complex numbers z equals negative 4 minus 3 straight i comma space w equals a i and  z over w equals b plus 2 a straight i, where a comma space b element of straight real numbers.

Find the possible values of a and b.

10b
Sme Calculator
3 marks

Find the modulus of w over z.

Did this page help you?

11a
Sme Calculator
4 marks

Let omega subscript 1 equals 3 minus straight i space and space omega subscript 2 equals 1 plus 2 straight i.

Given that 1 over omega subscript 1 plus 1 over omega subscript 2 equals 1 over z, express z in the form a plus b straight i, where a comma b element of straight real numbers.

11b
Sme Calculator
2 marks

Find omega subscript 1 omega subscript 2 z to the power of asterisk times, giving your answer in the form a plus b straight i, where a comma space b element of straight real numbers.

Did this page help you?

1a
Sme Calculator
4 marks

Consider the complex numbers z subscript 1 equals square root of 3 plus 2 straight i and z subscript 2 equals straight i minus 3 square root of 3.

Find

(i)
u equals z subscript 1 z subscript 2
(ii)
v equals z subscript 1 over z subscript 2
1b
Sme Calculator
3 marks

The complex numbers u and v are represented by the points straight A and straight B respectively on an Argand diagram with origin straight O. 

Determine whether the angle made by OA with the positive horizontal axis is greater than or less than the angle made by OB with the positive horizontal axis. Give a reason for your answer.

Did this page help you?

2a
Sme Calculator
4 marks

Consider the complex number z equals negative a plus 3 over 4 straight i.

Write down, in terms of a,

(i)
Re open parentheses z to the power of italic 2 close parentheses
(ii)
Im open parentheses z to the power of italic 3 close parentheses
2b
Sme Calculator
4 marks

In the case where a equals 2, find the modulus and argument of z cubed.

Did this page help you?

3a
Sme Calculator
3 marks

Consider the complex numbers  z subscript 1 equals straight i minus 1 half and z subscript 2 equals 1 half minus 3 over straight i.

Express z subscript 2 in the form a plus b straight i, where a comma b element of straight real numbers.

3b
Sme Calculator
6 marks

Find

(i)
z subscript 1 to the power of asterisk times z subscript 2
(ii)
z subscript 2 over z subscript 1
(iii)
open vertical bar z subscript 2 over z subscript 1 close vertical bar, giving your answer as an exact value.

Did this page help you?

4
Sme Calculator
6 marks

Consider a general complex number z equals x plus straight i y,  where  x comma space y element of straight real numbers , z element of straight complex numbers and  z not equal to 0

Show that

(i)
Re open parentheses 1 over straight z plus 1 over straight z to the power of asterisk times close parentheses equals fraction numerator 2 x over denominator x to the power of italic 2 plus y to the power of italic 2 end fraction
(ii)
Im open parentheses 1 over z plus 1 over z to the power of italic asterisk times close parentheses equals 0
(iii)
z z to the power of asterisk times equals open vertical bar z close vertical bar squared

Did this page help you?

5a
Sme Calculator
4 marks

Consider the equation z w minus w plus straight i z plus 1 equals 0, where w comma space z element of straight complex numbersw equals x plus straight i y.

Find an expression in terms of x and y for Re open parentheses z close parentheses.

5b
Sme Calculator
4 marks

Find in terms of x given that z is purely real.

Did this page help you?

6a
Sme Calculator
5 marks

Consider the complex numbers z subscript 1 equals fraction numerator 3 minus straight i over denominator 1 minus 2 straight i end fraction and z subscript 2 equals negative 3 straight i plus 1. 

Find the modulus of z subscript 1 over z subscript 2 to the power of asterisk times   giving your answer as an exact value.

6b
Sme Calculator
2 marks

The argument of z subscript 1 over z subscript 2 to the power of asterisk times is given as theta equals tan to the power of negative 1 end exponent x, where 0 less than theta less than 2 straight pi.  Find the value of x.

Did this page help you?

7a
Sme Calculator
3 marks

Consider the complex numbers z equals v over w comma v equals 1 minus p i space and space straight w equals 3 straight i minus 2 

Express z in the form a plus b straight i, where a comma space b comma space p element of straight real numbers..

7b
Sme Calculator
4 marks

In the case where z is purely imaginary, represent v comma space w and z on an Argand diagram.

Did this page help you?

8a
Sme Calculator
4 marks

Consider the complex numbers z equals fraction numerator a minus 3 straight i over denominator 2 plus straight i end fraction comma space w equals a plus b text i end text and z over w equals 1 plus 2 straight i  where a comma space b element of straight real numbers.

Find the values of a  and b.

8b
Sme Calculator
2 marks

Find the modulus of w over z, giving your answer as an exact value.

8c
Sme Calculator
2 marks

Find the argument of w over z , giving your answer in the range negative straight pi less or equal than arg w over z less or equal than pi  .

Did this page help you?

9
Sme Calculator
7 marks

Consider the complex numbers a minus w equals 2 z minus straight i and w minus 2 z equals b straight i minus 1

Find the values of a and b such that Re open parentheses w close parentheses equals Im open parentheses z close parentheses and Re open parentheses w close parentheses equals Re open parentheses z close parentheses plus 1.

Did this page help you?

10a
Sme Calculator
3 marks

Consider the complex numbers z subscript 1 equals 5 plus p straight i, z subscript 2 equals a plus b straight i and z subscript 1 over z subscript 2 equals negative 1 plus straight i , where z element of straight complex numbers
and a comma space b element of straight real numbers.

Find the values of a and b in terms of p

10b
Sme Calculator
3 marks

Given that open vertical bar z subscript 2 close vertical bar equals square root of 73 , find the possible values of p.

10c
Sme Calculator
2 marks

Given additionally that arg open parentheses z subscript 2 close parentheses equals 2.78  radians correct to 2 decimal places, determine the exact value of Im open parentheses z subscript 2 close parentheses .

Did this page help you?