Random Variables (DP IB Applications & Interpretation (AI))

Flashcards

1/21

0Still learning

Know0

Enjoying Flashcards?
Tell us what you think

Cards in this collection (21)

  • X is a random variable.

    Write straight E open parentheses a X plus b close parentheses in terms of straight E open parentheses X close parentheses, where a and b are constants.

    If X is a random variable, then Error converting from MathML to accessible text., where a and b are constants.

    This equation is given in your exam formula booklet.

  • X is a random variable.

    Write Var open parentheses a X plus b close parentheses in terms of Var open parentheses X close parentheses, where a and b are constants.

    If X is a random variable, thenError converting from MathML to accessible text., where a and b are constants.

    Adding or subtracting a constant does not affect the variance.

    This equation is given in your exam formula booklet.

  • True or False?

    Var open parentheses 3 minus X close parentheses equals negative Var open parentheses X close parentheses.

    False.

    Variance can never be negative.

    Var open parentheses 3 minus X close parentheses equals open parentheses negative 1 close parentheses squared Var open parentheses X close parentheses equals Var open parentheses X close parentheses.

  • Write straight E open parentheses a X plus b Y close parentheses in terms of straight E open parentheses X close parentheses and straight E open parentheses Y close parentheses.

    straight E open parentheses a X plus b Y close parentheses equals a straight E stretchy left parenthesis X stretchy right parenthesis plus b straight E stretchy left parenthesis Y stretchy right parenthesis.

    This equation is not given in your exam formula booklet.

  • Write Var open parentheses a X plus b Y close parentheses in terms of Var open parentheses X close parentheses and Var open parentheses Y close parentheses.

    Error converting from MathML to accessible text..

    This equation is not given in your exam formula booklet.

  • True or False?

    straight E open parentheses a X minus b Y close parentheses equals a straight E open parentheses X close parentheses minus b straight E open parentheses Y close parentheses.

    True.

    straight E open parentheses a X minus b Y close parentheses equals a straight E open parentheses X close parentheses minus b straight E open parentheses Y close parentheses.

  • True or False?

    Var open parentheses a X minus b Y close parentheses equals a squared Var open parentheses X close parentheses minus b squared Var open parentheses Y close parentheses.

    False.

    Var open parentheses a X minus b Y close parentheses equals a squared VarE open parentheses X close parentheses plus b squared Var open parentheses Y close parentheses.

  • What condition must X and Y satisfy in order for the formulaError converting from MathML to accessible text. to be true?

    X and Y must be independent in order for the formulaError converting from MathML to accessible text. to be true.

  • True or False?

    Var open parentheses a subscript 1 X subscript 1 plus-or-minus a subscript 2 X subscript 2 plus-or-minus... plus-or-minus a subscript n X subscript n close parentheses equals a subscript 1 Var open parentheses X subscript 1 close parentheses plus a subscript 2 Var open parentheses X subscript 2 close parentheses plus... plus a subscript n Var open parentheses X subscript n close parentheses.

    False.

    Var open parentheses a subscript 1 X subscript 1 plus-or-minus a subscript 2 X subscript 2 plus-or-minus... plus-or-minus a subscript n X subscript n close parentheses equals a subscript 1 squared Var open parentheses X subscript 1 close parentheses plus a subscript 2 squared Var open parentheses X subscript 2 close parentheses plus... plus a subscript n squared Var open parentheses X subscript n close parentheses.

    This is given in the formula booklet.

    You need to square the coefficients of the random variables.

  • X subscript 1 and X subscript 2 are independent observations of a random variable with variance sigma squared.

    Write Var open parentheses X subscript 1 plus X subscript 2 close parentheses in terms of sigma squared.

    X subscript 1 and X subscript 2 are independent observations of a random variable with variance sigma squared.

    Var open parentheses X subscript 1 plus X subscript 2 close parentheses equals Var open parentheses X subscript 1 close parentheses plus Var open parentheses X subscript 2 close parentheses equals sigma squared plus sigma squared equals 2 sigma squared.

  • True or False?

    If X subscript 1 and X subscript 2 are independent observations of the random variable X, then Var open parentheses X subscript 1 plus X subscript 2 close parentheses equals Var open parentheses 2 X close parentheses.

    False.

    If X subscript 1 and X subscript 2 are independent observations of the random variable X with variance sigma squared, then Var open parentheses X subscript 1 plus X subscript 2 close parentheses not equal to Var open parentheses 2 X close parentheses.

    Var open parentheses X subscript 1 plus X subscript 2 close parentheses equals 2 Var open parentheses X close parentheses and Var open parentheses 2 X close parentheses equals 2 squared Var open parentheses X close parentheses.

  • If X subscript 1 and X subscript 2 are independent observations of the random variable X, then what is the difference between X subscript 1 plus X subscript 2 and 2 X?

    If X subscript 1 and X subscript 2 are independent observations of the random variable X, then :

    • X subscript 1 plus X subscript 2 is where two observations are taken and added together,

    • whereas 2 X is where one observation is taken and doubled.

  • True or False?

    If X subscript 1 and X subscript 2 are observations of the random variable X, then straight E open parentheses X subscript 1 plus X subscript 2 close parentheses equals straight E open parentheses 2 X close parentheses.

    True.

    If X subscript 1 and X subscript 2 are observations of the random variable X with mean mu, then straight E open parentheses X subscript 1 plus X subscript 2 close parentheses equals straight E open parentheses 2 X close parentheses. Both are equal to 2 straight E open parentheses X close parentheses.

  • True or False?

    If X tilde Po open parentheses m close parentheses, then 2 X also follows a Poisson distribution.

    False.

    If X tilde Po open parentheses m close parentheses, then 2 X does not follow a Poisson distribution.

    straight E open parentheses 2 X close parentheses equals 2 m and Var open parentheses 2 X close parentheses equals 2 squared m, therefore straight E open parentheses 2 X close parentheses not equal to Var open parentheses 2 X close parentheses.

  • What is an estimator?

    An estimator is a random variable that is used to estimate a population parameter.

  • What does it mean if an estimator is unbiased?

    An estimator is called unbiased if its expected value is equal to the population parameter.

  • True or False?

    The sample mean top enclose x equals sum for blank of x over n is an unbiased estimate for the population mean.

    True.

    The sample mean top enclose x equals sum for blank of x over n is an unbiased estimate for the population mean.

  • True or False?

    The variance of a sample s subscript n squared equals sum for blank of x squared over n minus x with bar on top squared is an unbiased estimate for the population variance.

    False.

    The variance of a sample s subscript n squared equals sum for blank of x squared over n minus x with bar on top squared is a biased estimate for the population variance.

  • What is the formula for an unbiased estimate of the population variance?

    The formula for an unbiased estimate of the population variance is s subscript n minus 1 end subscript superscript 2 equals fraction numerator n over denominator n minus 1 end fraction s subscript n superscript 2.

    This formula is given in your exam formula booklet.

  • True or False?

    s subscript n minus 1 end subscript superscript 2 equals sum for blank of fraction numerator open parentheses x minus x with bar on top close parentheses squared over denominator n minus 1 end fraction.

    True.

    s subscript n minus 1 end subscript superscript 2 equals sum for blank of fraction numerator open parentheses x minus x with bar on top close parentheses squared over denominator n minus 1 end fraction, the formula is similar to the formula for the variance of a sample, except for the denominator.

  • What is the difference between s subscript n superscript 2 and s subscript n minus 1 end subscript superscript 2, in terms of what they represent?

    s subscript n superscript 2 represents the variance of a sample when it is treated as a population, whereas s subscript n minus 1 end subscript superscript 2 is an unbiased estimate for the population variance using a sample.