Further Complex Numbers (DP IB Applications & Interpretation (AI))

Flashcards

1/24

0Still learning

Know0

Enjoying Flashcards?
Tell us what you think

Cards in this collection (24)

  • What happens geometrically to a complex number, z, when the complex number a plus b straight iis added to it?

    When the complex number a plus b straight iis added to z, z is translated on the Argand diagram by the vector open parentheses table row a row b end table close parentheses.

  • What happens geometrically to a complex number, z, when the complex number a plus b straight iis subtracted from it?

    When the complex number a plus b straight iis subtracted from z, z is translated on the Argand diagram by the vector open parentheses table row cell negative a end cell row cell negative b end cell end table close parentheses.

  • Describe the geometric relationship between the origin of an Argand diagram and the complex numbers z, w and z plus w.

    The origin of an Argand diagram and the complex numbers z, w and z plus w form a parallelogram. z plus w is the vertex opposite the origin.

  • Describe the geometric relationship between the origin of an Argand diagram and the complex numbers z, w and z minus w.

    The origin of an Argand diagram and the complex numbers z, w and z minus w form a parallelogram. z minus w is the vertex opposite the origin.

  • What two geometrical transformations happen to a complex number, z, when it is multiplied by the complex number w?

    When z is multiplied by the complex number w:

    • it is rotated counter-clockwise by arg open parentheses w close parentheses,

    • it is stretched from the origin by scale factor open vertical bar w close vertical bar.

  • What two geometrical transformations happen to a complex number, z, when it is divided by the complex number w?

    When z is divided by the complex number w:

    • it is rotated clockwise by arg open parentheses w close parentheses,

    • it is stretched from the origin by scale factor fraction numerator 1 over denominator open vertical bar w close vertical bar end fraction.

  • Describe the geometrical relationship between z and z asterisk times.

    On an Argand diagram, z and z asterisk times are reflections in the real axis.

  • What does a complex number look like when written in modulus-argument (polar) form?

    A complex number that is written in modulus-argument (polar) form looks like z equals r open parentheses cos theta plus isin theta close parentheses where r is the modulus and theta is the argument.

  • What is denoted by r cis open parentheses theta close parentheses?

    r cis theta equals r open parentheses cos theta plus isin theta close parentheses.

  • What is the complex conjugate of r cis open parentheses theta close parentheses?

    The complex conjugate of r cis open parentheses theta close parentheses is r cis open parentheses negative theta close parentheses.

  • True or False?

    2 open parentheses cos open parentheses straight pi over 3 close parentheses minus isin open parentheses straight pi over 3 close parentheses close parentheses is written in modulus-argument (polar) form.

    False.

    2 open parentheses cos open parentheses straight pi over 3 close parentheses minus isin open parentheses straight pi over 3 close parentheses close parentheses is not written in modulus-argument (polar) form. There should be a "+" in front of straight i.

  • Write the complex number r open parentheses cos theta minus isin theta close parentheses in modulus-argument (polar) form.

    The complex number r open parentheses cos theta minus isin theta close parentheses in modulus-argument (polar) form is r open parentheses cos open parentheses negative theta close parentheses plus isin open parentheses negative theta close parentheses close parentheses.

  • If you know the modulus (r) and argument (theta) of a complex number, how can you find the real part?

    If you know the modulus (r) and argument (theta) of a complex number, the real part is equal to r cos theta.

  • If you know the modulus (r) and argument (theta) of a complex number, how can you find the imaginary part?

    If you know the modulus (r) and argument (theta) of a complex number, the imaginary part is equal to r sin theta.

  • What does a complex number look like when written in exponential (Euler) form?

    A complex number that is written in exponential (Euler) form looks like z equals r straight e to the power of straight i theta end exponent where r is the modulus and theta is the argument.

  • What is the complex conjugate of r straight e to the power of straight i theta end exponent?

    The complex conjugate of r straight e to the power of straight i theta end exponent is r straight e to the power of negative straight i theta end exponent.

  • How can you write z equals r straight e to the power of straight i theta end exponent in Cartesian form?

    You can write z equals r straight e to the power of straight i theta end exponent in Cartesian form as z equals r cos theta plus straight i r sin theta.

  • True or False?

    straight e to the power of straight i straight pi end exponent equals negative 1.

    True.

    straight e to the power of straight i straight pi end exponent equals negative 1.

  • True or False?

    You can multiply and divide complex numbers written in exponential (Euler) form by using the laws of indices.

    For example, 2 e to the power of straight pi over 4 i end exponent cross times 3 straight e to the power of straight pi over 2 straight i end exponent equals 6 straight e to the power of open parentheses straight pi over 4 plus straight pi over 2 close parentheses straight i end exponent.

    True.

    You can multiply and divide complex numbers written in exponential (Euler) form by using the laws of indices.

    For example, 2 e to the power of straight pi over 4 i end exponent cross times 3 straight e to the power of straight pi over 2 straight i end exponent equals 6 straight e to the power of open parentheses straight pi over 4 plus straight pi over 2 close parentheses straight i end exponent.

  • How do you divide complex numbers written in modulus-argument (polar) form?

    To divide complex numbers written in modulus-argument (polar) form, you divide the moduli and subtract the arguments.

    fraction numerator r subscript 1 open parentheses cos open parentheses theta subscript 1 close parentheses plus isin open parentheses theta subscript 1 close parentheses close parentheses over denominator r subscript 2 open parentheses cos open parentheses theta subscript 2 close parentheses plus isin open parentheses theta subscript 2 close parentheses close parentheses end fraction equals r subscript 1 over r subscript 2 open parentheses cos open parentheses theta subscript 1 minus theta subscript 2 close parentheses plus isin open parentheses theta subscript 1 minus theta subscript 2 close parentheses close parentheses.

  • True or False?

    When written in modulus-argument form, z equals r e to the power of straight i theta end exponent, the real part relates to the cos part.

    True.

    When written in modulus-argument form, z equals r e to the power of straight i theta end exponent, the real part relates to the cos part.

  • What is Euler's form for a space sin open parentheses b x plus c close parentheses?

    Euler's form for a space sin open parentheses b x plus c close parentheses is Im open parentheses space a e to the power of straight i open parentheses b x plus c close parentheses end exponent close parentheses.

  • True or False?

    a space cos open parentheses b x plus c close parentheses equals Im open parentheses space a e to the power of straight i open parentheses b x plus c close parentheses end exponent close parentheses

    False.

    a space cos open parentheses b x plus c close parentheses not equal to Im open parentheses space a e to the power of straight i open parentheses b x plus c close parentheses end exponent close parentheses

    a space cos open parentheses b x plus c close parentheses equals Re open parentheses space a e to the power of straight i open parentheses b x plus c close parentheses end exponent close parentheses

  • When using complex numbers to add together two sinusoidal functions, what must be the same in both functions?

    When using complex numbers to add together two sinusoidal functions, they must have the same frequency.

    However, it does not matter if the amplitudes or phase shifts are different.

    E.g. You can add together 4 sin open parentheses 2 x plus 1 close parentheses and 5 sin open parentheses 2 x minus 7 close parentheses as both functions have a frequency of 2.