Syllabus Edition

First teaching 2014

Last exams 2024

|

Graphical Representations (DP IB Chemistry: HL)

Revision Note

Stewart

Author

Stewart

Last updated

Graphical Representations of Reaction Order

Reaction Order Using Concentration-Time Graphs

  • In a zero-order reaction, the concentration of the reactant is inversely proportional to time
    • This means that the reactant concentration decreases as time increases
    • The graph is a straight line going down as shown:

Reaction Kinetics - Zero Order Concentration, downloadable AS & A Level Chemistry revision notes

Concentration-time graph of a zero-order reaction

  • The gradient of the line is the rate of reaction
    • Calculating the gradient at different points on the graph, will give a constant value for the rate of reaction

  • When the order with respect to a reactant is 0, a change in the concentration of the reactant has no effect on the rate of the reaction
  • Therefore:

Rate = k

  • This equation means that the gradient of the graph is the rate of reaction as well as the rate constant, k

  • In a first-order reaction, the concentration of the reactant decreases with time
    • The graph is a curve going downwards and eventually plateaus:

Reaction Kinetics - Second Order Concentration, downloadable AS & A Level Chemistry revision notes

Concentration-time graph of a first-order reaction

  • In a second-order reaction, the concentration of the reactant decreases more steeply with time
    • The concentration of reactant decreases more with increasing time compared to a first-order reaction
    • The graph is a steeper curve going downwards:

Reaction Kinetics - First Order Concentration, downloadable AS & A Level Chemistry revision notes

Concentration-time graph of a second-order reaction

Order of reaction from half-life

  • The order of a reaction can also be deduced from its half-life (t1/2 )
  • For a zero-order reaction the successive half-lives decrease with time
    • This means that it would take less time for the concentration of reactant to halve as the reaction progresses

  • The half-life of a first-order reaction remains constant throughout the reaction
    • The amount of time required for the concentration of reactants to halve will be the same during the entire reaction

  • For a second-order reaction, the half-life increases with time
    • This means that as the reaction is taking place, it takes more time for the concentration of reactants to halve

Reaction Kinetics - Half-Life, downloadable AS & A Level Chemistry revision notes

Half-lives of zero, first and second-order reactions

Examiner Tip

Make sure that you know the correct shapes for the concentration-time graphs. It can be easy to confuse some concentration-time graphs with the following rate-concentration graphs, particularly;

  • The straight line of a zero-order concentration-time graph with the straight line of a first-order rate-concentration graph.
  • The curve of a first-order concentration-time graph with the curve of a second-order rate-concentration graph.

Reaction order using rate-concentration graphs

  • In a zero-order reaction, the rate doesn’t depend on the concentration of the reactant
    • The rate of the reaction therefore remains constant throughout the reaction
    • The graph is a horizontal line
    • The rate equation is rate = k

Reaction Kinetics - Zero Order Rate, downloadable AS & A Level Chemistry revision notes

Rate-concentration graph of a zero-order reaction

  • In a first-order reaction, the rate is directly proportional to the concentration of a reactant
    • The rate of the reaction increases as the concentration of the reactant increases
    • This means that the rate of the reaction decreases as the concentration of the reactant decreases when it gets used up during the reaction
    • The graph is a straight line
    • The rate equation is rate = k[A]

Reaction Kinetics - First Order Rate, downloadable AS & A Level Chemistry revision notes

Rate-concentration graph of a first-order reaction

  • In a second-order reaction, the rate is directly proportional to the square of concentration of a reactant
    • The rate of the reaction increases more as the concentration of the reactant increases
    • This means that the rate of the reaction decreases more as the concentration of the reactant decreases when it gets used up during the reaction
    • The graph is a curved line
    • The rate equation is rate = k[A]2

Reaction Kinetics - Second Order Rate, downloadable AS & A Level Chemistry revision notes

Rate-concentration graphs of a second-order reaction

Examiner Tip

Careful - sometimes when asked to complete calculations for the rate constant, k, the exam question will give you a graph as well as tabulated data. Do not ignore the graph as this demonstrates the order of one of the reactants, while the tabulated data allows you to determine the order for the other reactants.

You've read 0 of your 5 free revision notes this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Stewart

Author: Stewart

Expertise: Chemistry Lead

Stewart has been an enthusiastic GCSE, IGCSE, A Level and IB teacher for more than 30 years in the UK as well as overseas, and has also been an examiner for IB and A Level. As a long-standing Head of Science, Stewart brings a wealth of experience to creating Exam Questions and revision materials for Save My Exams. Stewart specialises in Chemistry, but has also taught Physics and Environmental Systems and Societies.