Quadratic Trigonometric Equations (AQA AS Maths): Revision Note
Did this video help you?
Quadratic Trigonometric Equations
Solving quadratic trigonometric equations
If an equation involves sin2θ or cos2θ then it is a quadratic trigonometric equation
These can be solved by factorising and/or using trigonometric identities (see Trigonometry – Simple Identities)
As a quadratic can result in two solutions, will need to consider whether each solution exists and then find all solutions within a given interval for each
![Quadratic Trigonometric Equations Diagram 1, A Level & AS Level Pure Maths Revision Notes](https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=3840/https://cdn.savemyexams.com/uploads/2020/06/5.3.3-Quadratic-Trigonometric-Equations-Diagram-1.png)
Examiner Tips and Tricks
Sketch the appropriate sin, cos, tan graph to ensure you find ALL solutions within the given interval, and be super-careful if you get a negative solution but have a positive interval.
For example, for an equation, in the interval 0° ≤ x ≤ 360°, with solution sin x = ‑¼ then sin‑1(‑¼) = -14.5 (to 1d.p.), which is not between 0 and 360 – by sketching the graph you’ll be able to spot the two solutions will be 180 + 14.5 and 360 ‑ 14.5.
Worked Example
![Quadratic Trigonometric Equations Example Solution, A Level & AS Level Pure Maths Revision Notes](https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=3840/https://cdn.savemyexams.com/uploads/2020/09/5.3.3-Quadratic-Trigonometric-Equations-Example-Solution.png)
You've read 0 of your 5 free revision notes this week
Sign up now. It’s free!
Did this page help you?