The Cell Surface Membrane (AQA AS Biology)

Revision Note

Test yourself
Lára

Author

Lára

Last updated

Cell Surface Membranes

Phospholipids

  • Form the basic structure of the membrane (phospholipid bilayer)
  • The tails form a hydrophobic core comprising the innermost part of both the outer and inner layer of the membrane
  • Act as a barrier to most water-soluble substances (the non-polar fatty acid tails prevent polar molecules or ions from passing across the membrane)
  • This ensures water-soluble molecules such as sugars, amino acids and proteins cannot leak out of the cell and unwanted water-soluble molecules cannot get in
  • Can be chemically modified to act as signalling molecules by:
    • Moving within the bilayer to activate other molecules (eg. enzymes)
    • Being hydrolysed which releases smaller water-soluble molecules that bind to specific receptors in the cytoplasm

Cholesterol

  • Cholesterol regulates the fluidity of the membrane
  • Cholesterol molecules sit in between the phospholipids, preventing them from packing too closely together when temperatures are low; this prevents membranes from freezing and fracturing. 
  • Interaction between cholesterol and phospholipid tails also stabilises the cell membrane at higher temperatures by stopping the membrane from becoming too fluid
    • Cholesterol molecules bind to the hydrophobic tails of phospholipids, stabilising them and causing phospholipids to pack more closely together
  • Cholesterol also contributes to the impermeabilty of the membrane to ions and increases mechanical strength and stability of membranes; without it membranes would break down and cells burst

Glycolipids & glycoproteins

  • Glycolipids and glycoproteins contain carbohydrate chains that exist on the surface (the periphery/extrinsically), which enables them to act as receptor molecules
  • This allows glycolipids and glycoproteins to bind with certain substances at the cell’s surface
  • There are three main receptor types:
    • signalling receptors for hormones and neurotransmitters
    • receptors involved in endocytosis
    • receptors involved in cell adhesion and stabilisation (as the carbohydrate part can form hydrogen bonds with water molecules surrounding the cell

  • Some act as cell markers or antigens, for cell-to-cell recognition (eg. the ABO blood group antigens are glycolipids and glycoproteins that differ slightly in their carbohydrate chains)

Proteins

  • Transport proteins create hydrophilic channels to allow ions and polar molecules to travel through the membrane. There are two types:
    • channel (pore) proteins
    • carrier proteins

  • Each transport protein is specific to a particular ion or molecule
  • Transport proteins allow the cell to control which substances enter or leave

Examiner Tip

Membranes become less fluid when there is:

  • An increased proportion of saturated fatty acid chains as the chains pack together tightly and therefore there is a high number of intermolecular forces between the chains
  • A lower temperature as the molecules have less energy and therefore are not moving as freely which causes the structure to be more closely packed

Membranes become more fluid when there is:

  • An increased proportion of unsaturated fatty acid chains as these chains are bent, which means the chains are less tightly packed together and there are less intermolecular forces
  • At higher temperatures, the molecules have more energy and therefore move more freely, which increasing membrane fluidity

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Lára

Author: Lára

Expertise: Biology Lead

Lára graduated from Oxford University in Biological Sciences and has now been a science tutor working in the UK for several years. Lára has a particular interest in the area of infectious disease and epidemiology, and enjoys creating original educational materials that develop confidence and facilitate learning.