Derivatives of Polar Curves (College Board AP® Calculus BC)

Study Guide

Mark Curtis

Written by: Mark Curtis

Reviewed by: Dan Finlay

Updated on

Derivatives of polar curves

How do I find dr/dθ of a polar curve?

  • To find fraction numerator d r over denominator d theta end fraction of a polar curve, r open parentheses theta close parentheses, differentiate it with respect to theta

    • e.g. if r equals 1 plus cos space theta then fraction numerator d r over denominator d theta end fraction equals negative sin space theta

  • The sign of the derivative can be interpreted as follows:

    • fraction numerator d r over denominator d theta end fraction greater than 0 means r is increasing with respect to theta

      • Points on the curve are moving further away from the origin as theta increases

    • fraction numerator d r over denominator d theta end fraction less than 0 means r is decreasing with respect to theta

      • Points on the curve are moving closer to the origin as theta increases

  • For certain polar curves, the point at which fraction numerator d r over denominator d theta end fraction equals 0 spaceis the point that has the greatest distance from the origin

  • If two polar curves are given, r subscript 1 open parentheses theta close parentheses and r subscript 2 open parentheses theta close parentheses, then

    • fraction numerator d over denominator d theta end fraction open parentheses r subscript 1 minus r subscript 2 close parentheses is the rate at which the distance between the two curves is changing with respect to theta

How do I find dx/dθ of a polar curve?

Diagram of polar coordinates with a point P(x, y) or (r, θ). The angle θ and radius r are marked from the origin, labelled as "Pole" with the x-axis as "Initial Line".
  • To find fraction numerator d x over denominator d theta end fraction of a polar curve, r open parentheses theta close parentheses, first differentiate the trigonometric relationship x equals r space cos space theta using implicit differentiation (as r is not a constant - it varies with theta) and the product rule

    • fraction numerator d x over denominator d theta end fraction equals fraction numerator d r over denominator d theta end fraction space cos space theta minus r space sin space theta

    • Then substitute in r open parentheses theta close parentheses and fraction numerator d r over denominator d theta end fraction

  • The sign of the derivative can be interpreted as follows:

    • fraction numerator d x over denominator d theta end fraction greater than 0 means the x-coordinate is increasing with respect to theta

      • Points on the curve are moving in the positive x-direction as theta increases

    • fraction numerator d x over denominator d theta end fraction less than 0 means the x-coordinate is decreasing with respect to theta

      • Points on the curve are moving in the negative x-direction as theta increases

How do I find dy/dθ of a polar curve?

  • To find fraction numerator d y over denominator d theta end fraction of a polar curve, r open parentheses theta close parentheses, first differentiate the trigonometric relationship y equals r space sin space theta using the product rule (as r is not a constant - it varies with theta)

    • fraction numerator d y over denominator d theta end fraction equals fraction numerator d r over denominator d theta end fraction space sin space theta plus r space cos space theta

    • Then substitute in r open parentheses theta close parentheses and fraction numerator d r over denominator d theta end fraction

  • The sign of the derivative can be interpreted as follows:

    • fraction numerator d y over denominator d theta end fraction greater than 0 means the y-coordinate is increasing with respect to theta

      • Points on the curve are moving upwards as theta increases

    • fraction numerator d y over denominator d theta end fraction less than 0 means the y-coordinate is decreasing with respect to theta

      • Points on the curve are moving downwards as theta increases

Examiner Tips and Tricks

In an exam question, it is often easier to derive the formulas for fraction numerator d x over denominator d theta end fraction and fraction numerator d y over denominator d theta end fraction using the product rule, than trying to learn their results.

How do I find the slope of a polar curve, dy/dx?

  • The formula for the slope of a polar curve, fraction numerator d y over denominator d x end fraction, is

fraction numerator d y over denominator d x end fraction equals fraction numerator space fraction numerator d y over denominator d theta end fraction space over denominator fraction numerator d x over denominator d theta end fraction end fraction equals fraction numerator fraction numerator d r over denominator d theta end fraction space sin space theta plus r space cos space theta over denominator fraction numerator d r over denominator d theta end fraction space cos space theta minus r space sin space theta end fraction

  • The derivatives fraction numerator d y over denominator d theta end fraction and fraction numerator d x over denominator d theta end fraction come from above

  • The formula itself comes from the chain rule:

    • fraction numerator d y over denominator d x end fraction equals fraction numerator d y over denominator d theta end fraction times fraction numerator d theta over denominator d x end fraction equals fraction numerator d y over denominator d theta end fraction times fraction numerator 1 over denominator fraction numerator d x over denominator d theta end fraction end fraction

Examiner Tips and Tricks

Questions may ask you to find the equation of a tangent to a polar curve, which will require you to calculate the slope.

How do I find the second derivative of a polar curve with respect to x?

  • The formula for the second derivative of a polar curve with respect to x, fraction numerator d squared y over denominator d x squared end fraction, is

fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator fraction numerator d over denominator d theta end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses over denominator fraction numerator d x over denominator d theta end fraction end fraction

  • fraction numerator d over denominator d theta end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses means differentiate the expression for the slope of the polar curve, fraction numerator d y over denominator d x end fraction, with respect to theta

    • Recall that fraction numerator d y over denominator d x end fraction equals fraction numerator space fraction numerator d y over denominator d theta end fraction space over denominator fraction numerator d x over denominator d theta end fraction end fraction equals fraction numerator fraction numerator d r over denominator d theta end fraction space sin space theta plus r space cos space theta over denominator fraction numerator d r over denominator d theta end fraction space cos space theta minus r space sin space theta end fraction

    • and that fraction numerator d x over denominator d theta end fraction equals fraction numerator d r over denominator d theta end fraction space cos space theta minus r space sin space theta from above

  • The formula for the second derivative comes from the chain rule:

    • fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator d over denominator d x end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses equals fraction numerator d over denominator d theta end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses times fraction numerator d theta over denominator d x end fraction equals fraction numerator d over denominator d theta end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses times fraction numerator 1 over denominator fraction numerator d x over denominator d theta end fraction end fraction

Examiner Tips and Tricks

If you have studied parametric equations, then it helps to know that the second derivative formula of a polar curve is the same as the second derivative formula of a parametric curve, just with theta instead of t.

How do I find derivatives of polar curves with respect to time, t?

  • To find derivatives of a polar curve with respect to time, t greater or equal than 0, use the chain rule (related rates of change)

    • These are used in questions about a particle moving around a polar curve

  • For example, if fraction numerator d r over denominator d t end fraction equals 2 at theta equals pi over 2 on the curve r equals 10 space cos space theta, then to find fraction numerator d theta over denominator d t end fraction at theta equals pi over 2:

    • Use that fraction numerator d theta over denominator d t end fraction equals fraction numerator d theta over denominator d r end fraction times fraction numerator d r over denominator d t end fraction

      • Substitute in theta equals pi over 2 and fraction numerator d r over denominator d t end fraction equals 2

      • Use thatfraction numerator d theta over denominator d r end fraction equals fraction numerator 1 over denominator fraction numerator d r over denominator d theta end fraction end fraction where fraction numerator d r over denominator d theta end fraction equals negative 10 space sin space theta (by differentiating r equals 10 space cos space theta)

    • This gives fraction numerator 1 over denominator negative 10 space sin open parentheses pi over 2 close parentheses end fraction times 2 equals negative 1 fifth

  • If you are given a relationship between theta and t, you can substitute this into the equation of the polar curve

Examiner Tips and Tricks

If a polar coordinates question asks to find a derivative at a particular point, read the question carefully to see which derivative is being asked for ('with respect to' what).

Worked Example

A sketch of the polar curve r equals e to the power of negative theta end exponent is shown below, where 0 less or equal than theta less or equal than pi.

Graph of the polar equation r = e^(-theta), curving into the origin anticlockwise, intersecting the x-axis.

(a) Find fraction numerator d r over denominator d theta end fraction at theta equals 0 and interpret the result.

Differentiate r equals e to the power of negative theta end exponent with respect to theta

fraction numerator d r over denominator d theta end fraction equals negative e to the power of negative theta end exponent

Substitute in theta equals 0

fraction numerator d r over denominator d theta end fraction equals negative e to the power of negative 0 end exponent equals negative 1

A negative value of fraction numerator d r over denominator d theta end fraction means points on the curve are moving closer to the origin

fraction numerator d r over denominator d theta end fraction equals negative 1 at theta equals 0 which means r is decreasing with respect to theta, so the points on the curve are moving closer to the origin as theta increases

(b) Find the slope of the line tangent to the curve at theta equals pi over 4.

The formula for the slope of a polar curve is fraction numerator d y over denominator d x end fraction equals fraction numerator space fraction numerator d y over denominator d theta end fraction space over denominator fraction numerator d x over denominator d theta end fraction end fraction equals fraction numerator fraction numerator d r over denominator d theta end fraction space sin space theta plus r space cos space theta over denominator fraction numerator d r over denominator d theta end fraction space cos space theta minus r space sin space theta end fraction

Substitute r equals e to the power of negative theta end exponent and fraction numerator d r over denominator d theta end fraction equals negative e to the power of negative theta end exponent into the formula and simplify

table row cell fraction numerator d y over denominator d x end fraction end cell equals cell fraction numerator space fraction numerator d y over denominator d theta end fraction space over denominator fraction numerator d x over denominator d theta end fraction end fraction equals fraction numerator fraction numerator d r over denominator d theta end fraction space sin space theta plus r space cos space theta over denominator fraction numerator d r over denominator d theta end fraction space cos space theta minus r space sin space theta end fraction end cell row blank equals cell fraction numerator negative e to the power of negative theta end exponent sin space theta plus e to the power of negative theta end exponent cos space theta over denominator negative e to the power of negative theta end exponent cos space theta minus e to the power of negative theta end exponent sin space theta end fraction end cell row blank equals cell fraction numerator up diagonal strike negative e to the power of negative theta end exponent end strike open parentheses sin space theta minus cos space theta close parentheses over denominator up diagonal strike negative e to the power of negative theta end exponent end strike open parentheses cos space theta plus sin space theta close parentheses end fraction end cell row blank equals cell fraction numerator sin space theta minus cos space theta over denominator cos space theta plus sin space theta end fraction end cell end table

Now substitute theta equals pi over 4 into the expression above

table row cell fraction numerator d y over denominator d x end fraction end cell equals cell fraction numerator sin space pi over 4 minus cos space pi over 4 over denominator cos space pi over 4 plus sin space pi over 4 end fraction end cell row blank equals cell fraction numerator fraction numerator square root of 2 over denominator 2 end fraction minus fraction numerator square root of 2 over denominator 2 end fraction over denominator fraction numerator square root of 2 over denominator 2 end fraction plus fraction numerator square root of 2 over denominator 2 end fraction end fraction end cell row blank equals 0 end table

fraction numerator d y over denominator d x end fraction equals 0 at theta equals pi over 4

(c) It is known that the derivative fraction numerator d over denominator d theta end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses simplifies to 2 over open parentheses cos space theta plus sin space theta close parentheses squared. Find the value of fraction numerator d squared y over denominator d x squared end fraction at theta equals pi.

The second derivative with respect to x is given by the formula fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator fraction numerator d over denominator d theta end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses over denominator fraction numerator d x over denominator d theta end fraction end fraction

The numerator is given in the question, 2 over open parentheses cos space theta plus sin space theta close parentheses squared, so substitute theta equals pi in and simplify

2 over open parentheses cos space pi plus sin space pi close parentheses squared equals 2 over open parentheses negative 1 plus 0 close parentheses squared equals 2

The denominator is fraction numerator d x over denominator d theta end fraction equals fraction numerator d r over denominator d theta end fraction space cos space theta minus r space sin space theta which, from part (b), is table row blank blank cell negative e to the power of negative theta end exponent cos space theta minus e to the power of negative theta end exponent sin space theta end cell end table

Substitute theta equals pi in and simplify

table row cell negative e to the power of negative pi end exponent cos space pi minus e to the power of negative pi end exponent sin space pi end cell equals cell negative e to the power of negative pi end exponent open parentheses negative 1 close parentheses minus e to the power of negative pi end exponent open parentheses 0 close parentheses end cell row blank equals cell e to the power of negative pi end exponent end cell end table

Divide the numerator by the denominator and simplify

2 over e to the power of negative pi end exponent equals 2 e to the power of pi

fraction numerator d squared y over denominator d x squared end fraction equals 2 e to the power of pi at theta equals pi

(d) A particle is moving around the curve such that at the point theta equals pi over 2 the rate at which the angle is increasing with respect to time, t greater or equal than 0, is 3 radians per second. Find and interpret the value of fraction numerator d y over denominator d t end fraction at the point theta equals pi over 2.

The rate at which the angle is increasing with respect to time, t greater or equal than 0, is fraction numerator d theta over denominator d t end fraction, so

fraction numerator d theta over denominator d t end fraction equals 3 at theta equals pi over 2

Use the chain rule (connected rates of change) to write fraction numerator d y over denominator d t end fraction as a derivative involving fraction numerator d theta over denominator d t end fraction

fraction numerator d y over denominator d t end fraction equals fraction numerator d y over denominator d theta end fraction times fraction numerator d theta over denominator d t end fraction

Find an expression for fraction numerator d y over denominator d theta end fraction, which has the formula fraction numerator d y over denominator d theta end fraction equals fraction numerator d r over denominator d theta end fraction space sin space theta plus r space cos space theta and which has already been found in part (b)

table row blank blank cell fraction numerator d y over denominator d theta end fraction end cell end table equals table row blank blank minus end table table row blank blank e end table table row blank blank cell blank to the power of negative theta end exponent end cell end table table row blank blank sin end table table row blank blank space end table table row blank blank theta end table table row blank blank plus end table table row blank blank e end table table row blank blank cell blank to the power of negative theta end exponent end cell end table table row blank blank cos end table table row blank blank space end table table row blank blank theta end table

Substitute fraction numerator d y over denominator d theta end fraction, theta equals pi over 2 and fraction numerator d theta over denominator d t end fraction equals 3 into fraction numerator d y over denominator d t end fraction equals fraction numerator d y over denominator d theta end fraction times fraction numerator d theta over denominator d t end fraction

fraction numerator d y over denominator d t end fraction equals fraction numerator d y over denominator d theta end fraction times fraction numerator d theta over denominator d t end fraction
equals open parentheses table row blank blank cell negative e to the power of negative pi over 2 end exponent sin space pi over 2 plus e to the power of negative pi over 2 end exponent cos space pi over 2 end cell end table close parentheses times 3
equals table row blank blank e end table table row blank blank cell blank to the power of negative pi over 2 end exponent end cell end table open parentheses table row blank blank cell negative 1 plus 0 end cell end table close parentheses times 3
equals table row blank blank cell negative 3 end cell end table table row blank blank cell e to the power of negative pi over 2 end exponent end cell end table

table row cell negative 3 e to the power of negative pi over 2 end exponent end cell less than 0 end table, and a negative value of fraction numerator d y over denominator d t end fraction means the y-coordinate of the particle's motion is decreasing as time increases

fraction numerator d y over denominator d t end fraction equals negative 3 e to the power of negative pi over 2 end exponent at theta equals pi over 2, so the the y-coordinate of the particle's motion is decreasing as time increases

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Mark Curtis

Author: Mark Curtis

Expertise: Maths

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.