Second Derivatives of Parametric Equations (College Board AP® Calculus BC)

Study Guide

Mark Curtis

Written by: Mark Curtis

Reviewed by: Dan Finlay

Updated on

Second derivatives of parametric equations

What is the parametric second derivative?

  • The second derivative of parametric equations is an expression for fraction numerator d squared y over denominator d x squared end fraction but in terms of the parameter, t, only

  • The formula for the parametric second derivative is

fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator fraction numerator d over denominator d t end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses over denominator fraction numerator d x over denominator d t end fraction end fraction

  • In words, the formula says:

    • differentiate the parametric first derivative, fraction numerator d y over denominator d x end fraction , in terms of t

    • then divide it by fraction numerator d x over denominator d t end fraction

      • Remember that the parametric first derivative is given by the formula fraction numerator d y over denominator d x end fraction equals fraction numerator space fraction numerator d y over denominator d t end fraction space over denominator fraction numerator d x over denominator d t end fraction end fraction

  • The formula comes from fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator d over denominator d x end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses equals fraction numerator d over denominator d t end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses cross times fraction numerator d t over denominator d x end fraction equals fraction numerator d over denominator d t end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses cross times fraction numerator 1 over denominator fraction numerator d x over denominator d t end fraction end fraction

Examiner Tips and Tricks

It helps to note that the formulas for both the first and second parametric derivatives divide by fraction numerator d x over denominator d t end fraction.

When do I use the parametric second derivative?

  • The parametric second derivative can be used to classify local extrema

  • First, set the parametric first derivative equal to zero, fraction numerator d y over denominator d x end fraction equals fraction numerator space fraction numerator d y over denominator d t end fraction space over denominator fraction numerator d x over denominator d t end fraction end fraction equals 0, and solve to find the critical t-values, t equals t subscript 0

  • Then substitute the critical t-values, t equals t subscript 0. into the parametric second derivative fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator fraction numerator d over denominator d t end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses over denominator fraction numerator d x over denominator d t end fraction end fraction to determine the nature of the local extrema

    • If fraction numerator d squared y over denominator d x squared end fraction greater than 0 space at space t equals t subscript 0 then there is a local minimum at t equals t subscript 0

    • If fraction numerator d squared y over denominator d x squared end fraction less than 0 space at space t equals t subscript 0 then there is a local maximum at t equals t subscript 0

    • If fraction numerator d squared y over denominator d x squared end fraction equals 0 space at space t equals t subscript 0 then you need to investigate further (e.g. a sketch)

Examiner Tips and Tricks

You can find the sign of fraction numerator d squared y over denominator d x squared end fraction by substituting in the critical t-value without necessarily needing to fully simplify the algebraic expression for fraction numerator d squared y over denominator d x squared end fraction.

Examiner Tips and Tricks

When calculating the parametric second derivative, be prepared to use the quotient rule.

Worked Example

A curve is given parametrically by

table row x equals cell t squared plus t end cell row y equals cell t cubed minus 3 t end cell end table

(a) Find and simplify an expression for fraction numerator d squared y over denominator d x squared end fraction in terms of t.

Start by finding the parametric first derivative, given by fraction numerator d y over denominator d x end fraction equals fraction numerator space fraction numerator d y over denominator d t end fraction space over denominator fraction numerator d x over denominator d t end fraction end fraction

fraction numerator d y over denominator d x end fraction equals fraction numerator space fraction numerator d y over denominator d t end fraction space over denominator fraction numerator d x over denominator d t end fraction end fraction equals fraction numerator 3 t squared minus 3 over denominator 2 t plus 1 end fraction

The parametric second derivative is given by fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator fraction numerator d over denominator d t end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses over denominator fraction numerator d x over denominator d t end fraction end fraction where the numerator means differentiate fraction numerator d y over denominator d x end fraction from above, fraction numerator 3 t squared minus 3 over denominator 2 t plus 1 end fraction, with respect to t

This requires the quotient rule, fraction numerator u to the power of apostrophe v space minus space u v to the power of apostrophe over denominator v squared end fraction, with u equals 3 t squared minus 3 and v equals 2 t plus 1

table row cell fraction numerator d over denominator d t end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses end cell equals cell fraction numerator open parentheses 6 t close parentheses open parentheses 2 t plus 1 close parentheses minus open parentheses 3 t squared minus 3 close parentheses open parentheses 2 close parentheses over denominator open parentheses 2 t plus 1 close parentheses squared end fraction end cell row blank equals cell fraction numerator 12 t squared plus 6 t minus 6 t squared plus 6 over denominator open parentheses 2 t plus 1 close parentheses squared end fraction end cell row blank equals cell fraction numerator 6 t squared plus 6 t plus 6 over denominator open parentheses 2 t plus 1 close parentheses squared end fraction end cell end table

The formula, fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator fraction numerator d over denominator d t end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses over denominator fraction numerator d x over denominator d t end fraction end fraction, says to divide the expression above by fraction numerator d x over denominator d t end fraction and the question says to simplify the answer

table row cell fraction numerator d squared y over denominator d x squared end fraction end cell equals cell fraction numerator fraction numerator 6 t squared plus 6 t plus 6 over denominator open parentheses 2 t plus 1 close parentheses squared end fraction over denominator 2 t plus 1 end fraction end cell row blank equals cell fraction numerator 6 t squared plus 6 t plus 6 over denominator open parentheses 2 t plus 1 close parentheses squared end fraction divided by open parentheses 2 t plus 1 close parentheses end cell row blank equals cell fraction numerator 6 t squared plus 6 t plus 6 over denominator open parentheses 2 t plus 1 close parentheses squared end fraction divided by fraction numerator open parentheses 2 t plus 1 close parentheses over denominator 1 end fraction end cell row blank equals cell fraction numerator 6 t squared plus 6 t plus 6 over denominator open parentheses 2 t plus 1 close parentheses squared end fraction cross times fraction numerator 1 over denominator open parentheses 2 t plus 1 close parentheses end fraction end cell row blank equals cell fraction numerator 6 t squared plus 6 t plus 6 over denominator open parentheses 2 t plus 1 close parentheses cubed end fraction end cell end table

You could also factorize out a 6 from the numerator (this is an optional step)

fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator 6 open parentheses t squared plus t plus 1 close parentheses over denominator open parentheses 2 t plus 1 close parentheses cubed end fraction

(b) Find the coordinates of any local extrema on the curve, and classify the nature of these extrema.

Local extrema occur when fraction numerator d y over denominator d x end fraction equals 0, so solve fraction numerator d y over denominator d x end fraction equals 0

fraction numerator 3 t squared minus 3 over denominator 2 t plus 1 end fraction equals 0

The left-hand side will be zero when the numerator is equal to zero

table row cell 3 t squared minus 3 end cell equals 0 row cell t squared end cell equals 1 row t equals cell plus-or-minus 1 end cell end table

To find the coordinates of the critical points, substitute t equals plus-or-minus 1 into the parametric equations table row x equals cell t squared plus t end cell end table and y equals t cubed minus 3 t

open parentheses 2 comma space minus 2 close parentheses and open parentheses 0 comma space 2 close parentheses

To determine the type of extrema, substitute t equals plus-or-minus 1 into the parametric second derivative

t equals 1 gives fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator 6 open parentheses 1 squared plus 1 plus 1 close parentheses over denominator open parentheses 2 cross times 1 plus 1 close parentheses cubed end fraction equals 2 over 3 greater than 0, local minimum

t equals negative 1 gives fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator 6 open parentheses open parentheses negative 1 close parentheses squared plus open parentheses negative 1 close parentheses plus 1 close parentheses over denominator open parentheses 2 open parentheses negative 1 close parentheses plus 1 close parentheses cubed end fraction equals negative 6 less than 0, local maximum

Write out the answer, relating the correct set of coordinates to the correct extremum

open parentheses 2 comma space minus 2 close parentheses is a local minimum

open parentheses 0 comma space 2 close parentheses is a local maximum

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Mark Curtis

Author: Mark Curtis

Expertise: Maths

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.