Motion with Parametric Equations (College Board AP® Calculus BC)

Study Guide

Mark Curtis

Written by: Mark Curtis

Reviewed by: Dan Finlay

Updated on

Motion with parametric equations

How do I model a particle moving in 2D using parametric equations?

  • A particle moving in two-dimensions follows a path (curve) in the x y-plane

    • This path can be given parametrically as x open parentheses t close parentheses and y open parentheses t close parentheses

      • x open parentheses t close parentheses is the displacement in the x-direction

      • y open parentheses t close parentheses is the displacement in the y-direction

    • Displacement is measured relative to a fixed origin, O

    • The parameter, t, represents time, where t greater or equal than 0

    • The coordinates of the particle's position at time t are open parentheses x open parentheses t close parentheses comma space y open parentheses t close parentheses close parentheses

  • The direction of motion is the direction along the curve as t increases

  • The initial position of the particle is the point at which t equals 0

    • The coordinates of the initial position are open parentheses x open parentheses 0 close parentheses comma space y open parentheses 0 close parentheses close parentheses

      • This may not be at the origin

  • Sometimes a time interval for the motion is given, t subscript 1 less or equal than t less or equal than t subscript 2

Diagram showing a curved path labelled "Path of Motion" with arrows for vertical and horizontal directions; x and y depend on time, t.

How do I find the velocity and acceleration in 2D?

  • Recall the ideas in the study guide on 'Motion in a Straight Line'

    • Velocity, v, is the rate of change of displacement, s, with respect to time

      • v equals fraction numerator d s over denominator d t end fraction

    • Acceleration, a, is the rate of change of velocity, v, with respect to time

      • a equals fraction numerator d v over denominator d t end fraction equals fraction numerator d squared s over denominator d t squared end fraction

  • In two dimensions, the displacement, velocity and acceleration of a particle each have two components in perpendicular directions

    • Displacement splits into x and y components

      • Often horizontal and vertical

    • Derivatives of these are as follows:

Derivative

Shorthand

Interpretation

fraction numerator d x over denominator d t end fraction

x apostrophe open parentheses t close parentheses

The velocity of the particle in the x-direction at time t

If the x-axis is horizontal then fraction numerator d x over denominator d t end fraction greater than 0 means moving to the right and fraction numerator d x over denominator d t end fraction less than 0 means moving to the left

fraction numerator d y over denominator d t end fraction

y apostrophe open parentheses t close parentheses

The velocity of the particle in the y-direction at time t

If the y-axis is vertical then fraction numerator d y over denominator d t end fraction greater than 0 means moving upwards and fraction numerator d y over denominator d t end fraction less than 0 means moving downwards

fraction numerator d squared x over denominator d t squared end fraction

x apostrophe apostrophe open parentheses t close parentheses

The acceleration of the particle in the x-direction at time t

fraction numerator d squared y over denominator d t squared end fraction

y apostrophe apostrophe open parentheses t close parentheses

The acceleration of the particle in the y-direction at time t

Examiner Tips and Tricks

If no units are given in a question, you don't need units in your answers.

How do I calculate the speed of a particle in 2D?

Diagram of a velocity triangle showing speed on the hypotenuse, dx/dt on the base, dy/dt as the height, and the direction of motion.
A velocity triangle
  • The speed of a particle at time t is given by the formula:

square root of open parentheses fraction numerator d x over denominator d t end fraction close parentheses squared plus open parentheses fraction numerator d y over denominator d t end fraction close parentheses squared end root

  • This is because speed is the magnitude (hypotenuse) of a velocity triangle formed out of:

    • the velocity of the particle in the x-direction, fraction numerator d x over denominator d t end fraction, at time t

    • and the velocity of the particle in the y-direction , fraction numerator d y over denominator d t end fraction, at time t

      • By Pythagoras' theorem, this gives square root of open parentheses fraction numerator d x over denominator d t end fraction close parentheses squared plus open parentheses fraction numerator d y over denominator d t end fraction close parentheses squared end root

  • The velocity triangle also gives the direction of motion of the particle at that time

  • The particle is at rest if the speed is zero

Examiner Tips and Tricks

Do not confuse the word 'speed' with 'velocity'!

How do I calculate the slope of a line that is tangent to the path of the particle?

Graph with a parametric curve and its tangent at point P, marked at time t equals t0; formula shows derivative of y with respect to x.
  • The slope of the line that is tangent to the path of the particle (a tangent to the curve) at time t is given by the formula:

fraction numerator d y over denominator d x end fraction equals fraction numerator space fraction numerator d y over denominator d t end fraction space over denominator fraction numerator d x over denominator d t end fraction end fraction equals fraction numerator y apostrophe open parentheses t close parentheses over denominator x apostrophe open parentheses t close parentheses end fraction

  • See the study guide on 'Derivatives of Parametric Equations'

  • This is the same slope as the velocity triangle at that time (see above)

    • Note that the direction of motion could be either way along the tangent

      • It will follow the direction in which t is increasing

How do I use indefinite integration for particles moving in 2D?

  • Indefinite integration can be used to find

    • displacement, x open parentheses t close parentheses or y open parentheses t close parentheses, by integrating velocity, x apostrophe open parentheses t close parentheses or y apostrophe open parentheses t close parentheses

    • velocity, x apostrophe open parentheses t close parentheses or y apostrophe open parentheses t close parentheses, by integrating acceleration, x apostrophe apostrophe open parentheses t close parentheses or y apostrophe apostrophe open parentheses t close parentheses

  • Always remember to add a constant of integration each time you integrate

    • Then use information in the question to find the constant

      • e.g. you may be told that x equals 5 when t equals 0

  • Indefinite integration is good when you need an algebraic expression in terms of time t

    • You can then evaluate it at different times

How do I use definite integration for particles moving in 2D?

  • If an algebraic expression in terms of t is not required but a specific value of a quantity is required (e.g. find x at time t equals 2) then definite integration can be used

    • Below are the commonly used definite integrals in motion questions:

Integral

Shorthand

Interpretation

integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript fraction numerator d x over denominator d t end fraction space d t equals x open parentheses t subscript 2 close parentheses minus x open parentheses t subscript 1 close parentheses

integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript x apostrophe open parentheses t close parentheses space d t equals x open parentheses t subscript 2 close parentheses minus x open parentheses t subscript 1 close parentheses

The change in the position of the x-coordinates

integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript fraction numerator d y over denominator d t end fraction space d t equals y open parentheses t subscript 2 close parentheses minus y open parentheses t subscript 1 close parentheses

integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript y apostrophe open parentheses t close parentheses space d t equals y open parentheses t subscript 2 close parentheses minus y open parentheses t subscript 1 close parentheses

The change in the position of the y-coordinates

integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript fraction numerator d squared x over denominator d t squared end fraction space d t equals fraction numerator d x over denominator d t end fraction open parentheses t subscript 2 close parentheses minus fraction numerator d x over denominator d t end fraction open parentheses t subscript 1 close parentheses

integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript space x apostrophe apostrophe open parentheses t close parentheses space d t equals x apostrophe open parentheses t subscript 2 close parentheses minus x apostrophe open parentheses t subscript 1 close parentheses

The change in the velocity of the particle in the x-direction

integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript fraction numerator d squared y over denominator d t squared end fraction space d t equals fraction numerator d y over denominator d t end fraction open parentheses t subscript 2 close parentheses minus fraction numerator d y over denominator d t end fraction open parentheses t subscript 1 close parentheses

integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript y apostrophe apostrophe open parentheses t close parentheses space d t equals y apostrophe open parentheses t subscript 2 close parentheses minus y apostrophe open parentheses t subscript 1 close parentheses

The change in the velocity of the particle in the y-direction

  • Definite integrals often need rearranging to find the specific value of a quantity at either end of the time interval

    • e.g. integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript x apostrophe open parentheses t close parentheses space d t equals x open parentheses t subscript 2 close parentheses minus x open parentheses t subscript 1 close parentheses rearranges to either

      • x open parentheses t subscript 2 close parentheses equals x open parentheses t subscript 1 close parentheses plus integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript x apostrophe open parentheses t close parentheses space d t

      • or x open parentheses t subscript 1 close parentheses equals x open parentheses t subscript 2 close parentheses minus integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript x apostrophe open parentheses t close parentheses space d t

Examiner Tips and Tricks

Motion questions are often found in the calculator sections of the exam, where you are expected to use your calculator to:

  • evaluate any definite integrals,

  • solve any equations.

How do I calculate the distance traveled by a particle in 2D?

  • The distance traveled by a particle between time t subscript 1and time t subscript 2 is the arc length of the path traveled, given by the definite integral:

Graph depicting a parametric curve from t1 to t2 with arrows showing the length of a section of the curve (a dashed line alongside), and an integral formula for distance traveled, L, above.
L is the distance traveled between time t1 and time t2

Examiner Tips and Tricks

Do not confuse the word 'distance' with 'displacement'!

Worked Example

A particle travels along a curve in the x y-plane. The particle is at the point open parentheses x open parentheses t close parentheses comma space y open parentheses t close parentheses close parentheses at time t where t greater or equal than 0. The derivatives of x open parentheses t close parentheses and y open parentheses t close parentheses are:

fraction numerator d x over denominator d t end fraction equals 6 t squared minus 2 t
fraction numerator d y over denominator d t end fraction equals square root of 4 e to the power of t plus 1 end root

At time t equals 3, the particle is at the point open parentheses 50 comma space 15 close parentheses.

(a) Find the acceleration of the particle in the x-direction at time t equals 3.

Differentiate the velocity of the particle in the x-direction, fraction numerator d x over denominator d t end fraction, to get the acceleration in the x-direction, fraction numerator d squared x over denominator d t squared end fraction

fraction numerator d squared x over denominator d t squared end fraction equals 12 t minus 2

Substitute in t equals 3

34

(b) Find an expression for x in terms of time, t.

Integrate the velocity of the particle in the x-direction, fraction numerator d x over denominator d t end fraction, to find x

Remember to add a constant of integration

x equals 2 t cubed minus t squared plus C

Use the fact that x equals 50 when t equals 3 (in the question) to find c

table row 50 equals cell 2 open parentheses 3 close parentheses cubed minus open parentheses 3 close parentheses squared plus C end cell row 50 equals cell 45 plus C end cell row C equals 5 end table

Substitute this value of C back into the expression for x

x equals 2 t cubed minus t squared plus 5

(c) Find the value of y at time t equals 6.

You know the displacement of the particle in the y-direction at time t equals 3 from the question (y equals 15)

You can use a definite integral to find y at time t equals 6

table row cell integral subscript 3 superscript 6 fraction numerator d y over denominator d t end fraction d t end cell equals cell y open parentheses 6 close parentheses minus y open parentheses 3 close parentheses end cell row cell integral subscript 3 superscript 6 square root of 4 e to the power of t plus 1 end root d t end cell equals cell y open parentheses 6 close parentheses minus 15 end cell end table

Make y open parentheses 6 close parentheses the subject, then evaluate the definite integral on your calculator

table row cell y open parentheses 6 close parentheses end cell equals cell 15 plus integral subscript 3 superscript 6 square root of 4 e to the power of t plus 1 end root d t end cell row blank equals cell 15 plus 62.5019 end cell end table

77.502

(d) Find the slope of the line tangent to the path of the particle at time t equals 6.

The slope of the line tangent to the path of the particle has the formula fraction numerator d y over denominator d x end fraction equals fraction numerator space fraction numerator d y over denominator d t end fraction space over denominator fraction numerator d x over denominator d t end fraction end fraction

fraction numerator d y over denominator d x end fraction equals fraction numerator space square root of 4 e to the power of t plus 1 end root space over denominator 6 t squared minus 2 t end fraction

Substitute in t equals 6

0.197

(e) Show that the particle is not initially at rest.

To be initially at rest, the speed square root of open parentheses fraction numerator d x over denominator d t end fraction close parentheses squared plus open parentheses fraction numerator d y over denominator d t end fraction close parentheses squared end root must equal zero when t equals 0

Find an expression for the speed

square root of open parentheses 6 t squared minus 2 t close parentheses squared plus open parentheses square root of 4 e to the power of t plus 1 end root close parentheses squared end root

Substitute in t equals 0 to see if the speed is zero

square root of open parentheses 6 open parentheses 0 close parentheses squared minus 2 open parentheses 0 close parentheses close parentheses squared plus open parentheses square root of 4 e to the power of 0 plus 1 end root close parentheses squared end root equals 2.2360... not equal to 0

The particle is not initially at rest, as its initial speed is 2.236

(f) Find the total distance traveled by the particle from time t equals 3 to time t equals 6.

The total distance traveled is given by integral subscript t subscript 1 end subscript superscript t subscript 2 end superscript square root of open parentheses fraction numerator d x over denominator d t end fraction close parentheses squared plus open parentheses fraction numerator d y over denominator d t end fraction close parentheses squared end root space d t where t subscript 1 equals 3 and t subscript 2 equals 6

integral subscript 3 superscript 6 square root of open parentheses 6 t squared minus 2 t close parentheses squared plus open parentheses square root of 4 e to the power of t plus 1 end root close parentheses squared end root space d t

Evaluate this definite integral on your calculator

356.534

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Mark Curtis

Author: Mark Curtis

Expertise: Maths

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.