Taylor or Maclaurin Series for a Function (College Board AP® Calculus BC): Study Guide

Roger B

Written by: Roger B

Reviewed by: Mark Curtis

Updated on

Taylor or Maclaurin series for a function

What is the Taylor series for a function?

  • Let f be a function

    • If the function exists at x equals a

    • and if the function is infinitely differentiable at x equals a

      • i.e. if the derivative f to the power of open parentheses n close parentheses end exponent open parentheses a close parentheses exists for all n equals 1 comma space 2 comma space 3 comma space 4 comma space...

    • then the Taylor series for f about x equals a is

space sum from n equals 0 to infinity of fraction numerator f to the power of open parentheses n close parentheses end exponent open parentheses a close parentheses over denominator n factorial end fraction open parentheses x minus a close parentheses to the power of n equals f open parentheses a close parentheses plus f to the power of apostrophe open parentheses a close parentheses open parentheses x minus a close parentheses plus fraction numerator f to the power of apostrophe apostrophe end exponent open parentheses a close parentheses over denominator 2 factorial end fraction open parentheses x minus a close parentheses squared plus... plus fraction numerator f to the power of open parentheses n close parentheses end exponent open parentheses a close parentheses over denominator n factorial end fraction open parentheses x minus a close parentheses to the power of n plus...

  • Note that

    • The Taylor series is a power series

    • The Taylor series can be seen as a Taylor polynomial that 'goes on forever'

      • I.e. the nth degree Taylor polynomial is a truncated Taylor series, which stops at a particular value of n

      • A Taylor polynomial for f is a partial sum of the Taylor series for f

What is the relationship between Taylor series and power series?

  • A power series about a is any series of the form

    • sum from n equals 0 to infinity of c subscript n open parentheses x minus a close parentheses to the power of n equals c subscript 0 plus c subscript 1 open parentheses x minus a close parentheses plus c subscript 2 open parentheses x minus a close parentheses squared plus... plus c subscript n open parentheses x minus a close parentheses to the power of n plus...

      • where the coefficients c subscript n can be any sequence of real numbers

  • A Taylor series about a is the series

    • space sum from n equals 0 to infinity of fraction numerator f to the power of open parentheses n close parentheses end exponent open parentheses a close parentheses over denominator n factorial end fraction open parentheses x minus a close parentheses to the power of n equals f open parentheses a close parentheses plus f to the power of apostrophe open parentheses a close parentheses open parentheses x minus a close parentheses plus fraction numerator f to the power of apostrophe apostrophe end exponent open parentheses a close parentheses over denominator 2 factorial end fraction open parentheses x minus a close parentheses squared plus... plus fraction numerator f to the power of open parentheses n close parentheses end exponent open parentheses a close parentheses over denominator n factorial end fraction open parentheses x minus a close parentheses to the power of n plus...

      • where the coefficients must have the specific form fraction numerator f to the power of open parentheses n close parentheses end exponent open parentheses a close parentheses over denominator n factorial end fraction

  • All Taylor series about a for the function f open parentheses x close parentheses are power series

    • As a Taylor series is a power series, it may converge

      • at a single point (i.e. at x equals a only)

      • over a finite interval of x values

      • or for all real numbers

    • On its interval of convergence, a Taylor series is exactly equal to its function

      • It only becomes an approximation if it is truncated at some value of n

  • Not all power series about a are Taylor series for the function f open parentheses x close parentheses

    • If, however, a power series about x equals a is found such that it converges to the function f open parentheses x close parentheses on some interval of convergence (i.e. has a positive radius of convergence), then that power series is the Taylor series for f open parentheses x close parentheses about a

    • This means that the Taylor series for a function is unique

      • I.e., there is no other power series that will also be exactly equal to the function

What is the Maclaurin series for a function?

  • A Maclaurin series for a function is a special case of a Taylor series

  • It is the Taylor series for a function about the point x equals 0

    • I.e. if the function f and all its derivatives exist at x equals 0, then the Maclaurin series for f about x equals 0 is

    space sum from n equals 0 to infinity of fraction numerator f to the power of open parentheses n close parentheses end exponent open parentheses 0 close parentheses over denominator n factorial end fraction x to the power of n equals f open parentheses 0 close parentheses plus f to the power of apostrophe open parentheses 0 close parentheses x plus fraction numerator f to the power of apostrophe apostrophe end exponent open parentheses 0 close parentheses over denominator 2 factorial end fraction x squared plus... plus fraction numerator f to the power of open parentheses n close parentheses end exponent open parentheses 0 close parentheses over denominator n factorial end fraction x to the power of n plus...

Examiner Tips and Tricks

In practice Maclaurin series are the most commonly encountered form of Taylor series. For the exam, however, make sure you are able to handle Taylor series about any point x equals a.

What standard power series should I be familiar with?

  • You should know the following four Maclaurin series for standard functions

  • fraction numerator 1 over denominator 1 minus x end fraction space equals space sum from n equals 0 to infinity of x to the power of n equals 1 plus x plus x squared plus x cubed plus...

    • This series converges for open vertical bar x close vertical bar less than 1, i.e. negative 1 less than x less than 1

    • Note that this is a geometric series with common ratio x

      • Remember that the geometric series sum is sum from n equals 0 to infinity of a r to the power of n equals fraction numerator a over denominator 1 minus r end fraction for open vertical bar r close vertical bar less than 1

      • The power series version can be found by

        • dividing both sides of that by a

        • and substituting r equals x

  • sin x space equals space sum from n equals 0 to infinity of open parentheses negative 1 close parentheses to the power of n fraction numerator x to the power of 2 n plus 1 end exponent over denominator open parentheses 2 n plus 1 close parentheses factorial end fraction equals x minus fraction numerator x cubed over denominator 3 factorial end fraction plus fraction numerator x to the power of 5 over denominator 5 factorial end fraction minus fraction numerator x to the power of 7 over denominator 7 factorial end fraction plus...

    • This series converges for all real numbers, i.e. for negative infinity less than x less than infinity

    • Note that this is an alternating series and x is in radians

  • cos x space equals space sum from n equals 0 to infinity of open parentheses negative 1 close parentheses to the power of n fraction numerator x to the power of 2 n end exponent over denominator open parentheses 2 n close parentheses factorial end fraction equals 1 minus fraction numerator x squared over denominator 2 factorial end fraction plus fraction numerator x to the power of 4 over denominator 4 factorial end fraction minus fraction numerator x to the power of 6 over denominator 6 factorial end fraction plus...

    • This series converges for all real numbers, i.e. for negative infinity less than x less than infinity

    • Note that this is an alternating series and x is in radians

  • e to the power of x space equals space sum from n equals 0 to infinity of fraction numerator x to the power of n over denominator n factorial end fraction equals 1 plus x plus fraction numerator x squared over denominator 2 factorial end fraction plus fraction numerator x cubed over denominator 3 factorial end fraction plus...

    • This series converges for all real numbers, i.e. negative infinity less than x less than infinity

  • These results are summarized in the table below

function

Maclaurin series

convergence

fraction numerator 1 over denominator 1 minus x end fraction space

1 plus x plus x squared plus x cubed plus...

negative 1 less than x less than 1

sin x

x minus fraction numerator x cubed over denominator 3 factorial end fraction plus fraction numerator x to the power of 5 over denominator 5 factorial end fraction minus fraction numerator x to the power of 7 over denominator 7 factorial end fraction plus...

all x

cos x

1 minus fraction numerator x squared over denominator 2 factorial end fraction plus fraction numerator x to the power of 4 over denominator 4 factorial end fraction minus fraction numerator x to the power of 6 over denominator 6 factorial end fraction plus...

all x

e to the power of x

1 plus x plus fraction numerator x squared over denominator 2 factorial end fraction plus fraction numerator x cubed over denominator 3 factorial end fraction plus...

all x

Worked Example

Show that the first four non-zero terms of the Maclaurin series for f open parentheses x close parentheses equals sin x are given by x minus fraction numerator x cubed over denominator 3 factorial end fraction plus fraction numerator x to the power of 5 over denominator 5 factorial end fraction minus fraction numerator x to the power of 7 over denominator 7 factorial end fraction.

Start by calculating the derivatives

f to the power of apostrophe open parentheses x close parentheses equals cos x

f to the power of apostrophe apostrophe end exponent open parentheses x close parentheses equals negative sin x

f to the power of apostrophe apostrophe apostrophe end exponent open parentheses x close parentheses equals negative cos x

The Maclaurin series is the Taylor series about x equals 0, and f open parentheses x close parentheses and f to the power of apostrophe apostrophe end exponent open parentheses x close parentheses are both equal to zero at x equals 0, so we're going to need more derivatives

Note however that the derivatives of sin x 'cycle back around' at this point

f to the power of open parentheses 4 close parentheses end exponent open parentheses x close parentheses equals sin x

f to the power of open parentheses 5 close parentheses end exponent open parentheses x close parentheses equals cos x

f to the power of open parentheses 6 close parentheses end exponent open parentheses x close parentheses equals negative sin x

f to the power of open parentheses 7 close parentheses end exponent open parentheses x close parentheses equals negative cos x

Now calculate the values of f open parentheses x close parentheses and those derivatives at x equals 0

Remember sin open parentheses 0 close parentheses equals 0 and cos open parentheses 0 close parentheses equals 1

f open parentheses 0 close parentheses equals 0 space space space space space space space space f to the power of apostrophe open parentheses 0 close parentheses equals 1 space space space space space space space space space f to the power of apostrophe apostrophe end exponent open parentheses 0 close parentheses equals 0 space space space space space space space space space f to the power of apostrophe apostrophe apostrophe end exponent open parentheses 0 close parentheses equals negative 1

f to the power of open parentheses 4 close parentheses end exponent open parentheses 0 close parentheses equals 0 space space space space space space space space f to the power of open parentheses 5 close parentheses end exponent open parentheses 0 close parentheses equals 1 space space space space space space space space space f to the power of open parentheses 6 close parentheses end exponent open parentheses 0 close parentheses equals 0 space space space space space space space space space f to the power of open parentheses 7 close parentheses end exponent open parentheses 0 close parentheses equals negative 1

Now substitute those values into the Maclaurin series formula space sum from n equals 0 to infinity of fraction numerator f to the power of open parentheses n close parentheses end exponent open parentheses 0 close parentheses over denominator n factorial end fraction x to the power of n equals f open parentheses 0 close parentheses plus f to the power of apostrophe open parentheses 0 close parentheses x plus fraction numerator f to the power of apostrophe apostrophe end exponent open parentheses 0 close parentheses over denominator 2 factorial end fraction x squared plus... plus fraction numerator f to the power of open parentheses n close parentheses end exponent open parentheses 0 close parentheses over denominator n factorial end fraction x to the power of n plus...

f open parentheses 0 close parentheses plus f to the power of apostrophe open parentheses 0 close parentheses x plus fraction numerator f to the power of apostrophe apostrophe end exponent open parentheses 0 close parentheses over denominator 2 factorial end fraction x squared plus fraction numerator f to the power of apostrophe apostrophe apostrophe end exponent open parentheses 0 close parentheses over denominator 3 factorial end fraction x cubed plus fraction numerator f to the power of open parentheses 4 close parentheses end exponent open parentheses 0 close parentheses over denominator 4 factorial end fraction x to the power of 4 plus fraction numerator f to the power of open parentheses 4 close parentheses end exponent open parentheses 0 close parentheses over denominator 4 factorial end fraction x to the power of 4 plus fraction numerator f to the power of open parentheses 5 close parentheses end exponent open parentheses 0 close parentheses over denominator 5 factorial end fraction x to the power of 5 plus fraction numerator f to the power of open parentheses 6 close parentheses end exponent open parentheses 0 close parentheses over denominator 6 factorial end fraction x to the power of 6 plus fraction numerator f to the power of open parentheses 7 close parentheses end exponent open parentheses 0 close parentheses over denominator 7 factorial end fraction x to the power of 7
equals 0 plus 1 times x plus fraction numerator 0 over denominator 2 factorial end fraction x squared plus fraction numerator negative 1 over denominator 3 factorial end fraction x cubed plus fraction numerator 0 over denominator 4 factorial end fraction x to the power of 4 plus fraction numerator 1 over denominator 5 factorial end fraction x to the power of 5 plus fraction numerator 0 over denominator 6 factorial end fraction x to the power of 6 plus fraction numerator negative 1 over denominator 7 factorial end fraction x to the power of 7
equals 0 plus x plus 0 minus fraction numerator 1 over denominator 3 factorial end fraction x cubed plus 0 plus fraction numerator 1 over denominator 5 factorial end fraction x to the power of 5 plus 0 minus fraction numerator 1 over denominator 7 factorial end fraction x to the power of 7
equals x minus fraction numerator x cubed over denominator 3 factorial end fraction plus fraction numerator x to the power of 5 over denominator 5 factorial end fraction minus fraction numerator x to the power of 7 over denominator 7 factorial end fraction

The first four non-zero terms of the Maclaurin series for f open parentheses x close parentheses equals sin x are x minus fraction numerator x cubed over denominator 3 factorial end fraction plus fraction numerator x to the power of 5 over denominator 5 factorial end fraction minus fraction numerator x to the power of 7 over denominator 7 factorial end fraction

Do all Taylor series have an infinite number of non-zero terms?

  • For some functions, the derivatives all become zero after a certain point

    • In particular, this is true of polynomial functions

  • For example, if you try to calculate the Taylor series for f open parentheses x close parentheses equals x squared about x equals a

    • The derivatives are f to the power of apostrophe open parentheses x close parentheses equals 2 x, f to the power of apostrophe apostrophe end exponent open parentheses x close parentheses equals 2, f to the power of apostrophe apostrophe apostrophe end exponent open parentheses x close parentheses equals 0, f to the power of open parentheses 4 close parentheses end exponent open parentheses x close parentheses equals 0, f to the power of open parentheses 5 close parentheses end exponent open parentheses x close parentheses equals 0, etc.

    • When you put that into the Taylor series formula you get

      table row cell space sum from n equals 0 to infinity of fraction numerator f to the power of open parentheses n close parentheses end exponent open parentheses a close parentheses over denominator n factorial end fraction open parentheses x minus a close parentheses to the power of n end cell equals cell a squared plus 2 a open parentheses x minus a close parentheses plus fraction numerator 2 over denominator 2 factorial end fraction open parentheses x minus a close parentheses squared plus 0 plus 0 plus 0 plus... end cell row blank equals cell a squared plus 2 a open parentheses x minus a close parentheses plus open parentheses x minus a close parentheses squared end cell end table

      • Expanding givestable row blank blank cell space a squared plus 2 a x minus 2 a squared plus x squared minus 2 a x plus a squared end cell end table which simplifies to x squared

      • I.e., the Taylor series for x squared is just x squared

  • The Taylor series for a polynomial function is always just equal to the polynomial function

  • For more 'interesting' functions, however, the Taylor series will generally go on forever

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Roger B

Author: Roger B

Expertise: Maths

Roger's teaching experience stretches all the way back to 1992, and in that time he has taught students at all levels between Year 7 and university undergraduate. Having conducted and published postgraduate research into the mathematical theory behind quantum computing, he is more than confident in dealing with mathematics at any level the exam boards might throw at you.

Mark Curtis

Author: Mark Curtis

Expertise: Maths

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.