Integration Using Substitution (College Board AP® Calculus BC)

Study Guide

Roger B

Written by: Roger B

Reviewed by: Dan Finlay

Updated on

Determining indefinite integrals using u-substitutions

What is integration by substitution?

  • Substitution simplifies an integral by defining an alternative variable (usuallyspace u) in terms of the original variable (usuallyspace x)

    • The integral in u is much easier to solve than the original integral in x

    • The substitution can be reversed at the end to get the answer in terms of x

How do I integrate simple functions using u-substitution?

  • In a simple integral involving substitution, you will usually be integrating a composite function (i.e., 'function of a function')

    • These can also be solved 'by inspection'

      • See the 'Integrals of Composite Functions' study guide

    • Substitution can be a safer method when 'by inspection' is awkward or difficult to spot

  • STEP 1
    Identify the substitution to be used – it will be the secondary (or 'inside') function in a composite function

    • I.e. if the integral involvesspace f left parenthesis g left parenthesis x right parenthesis right parenthesis, letspace u equals g left parenthesis x right parenthesis

    • E.g. space integral 3 x cos open parentheses x squared minus 5 close parentheses space d x

      • Let u equals x squared minus 5

  • STEP 2
    Differentiate the substitution and rearrange

    • fraction numerator straight d u over denominator straight d x end fractioncan be treated like a fraction (i.e. “multiply byspace d x" to get rid of fractions)

    • E.g. u equals x squared minus 5 space space rightwards double arrow space space fraction numerator d u over denominator d x end fraction equals 2 x

      • Then space d u equals 2 x d x space space rightwards double arrow space space x d x equals 1 half d u

  • STEP 3
    Replace all parts of the integral

    • Allspace x terms should be replaced with equivalentspace u terms, includingspace d x

    • E.g. space integral 3 x cos open parentheses x squared minus 5 close parentheses space d x equals 3 integral cos open parentheses x squared minus 5 close parentheses times x d x

      • So space integral 3 x cos open parentheses x squared minus 5 close parentheses space d x equals 3 integral cos u times 1 half d u equals 3 over 2 integral cos u space d u

  • STEP 4
    Integrate

    • E.g. space 3 over 2 integral cos u space d u equals 3 over 2 sin u plus C

      • Don't forget the constant of integration

  • STEP 5
    Substitutespace x back in

    • Replace u everywhere with the equivalent expression for x

    • E.g. space 3 over 2 sin u plus C equals 3 over 2 sin open parentheses x squared minus 5 close parentheses plus C

      • So space integral 3 x cos open parentheses x squared minus 5 close parentheses space d x equals 3 over 2 sin open parentheses x squared minus 5 close parentheses plus C

Worked Example

Find the indefinite integral integral fraction numerator x squared minus 1 over denominator 2 x cubed minus 6 x plus 7 end fraction space d x.

Answer:

Here the 'main' function in the composite function is fraction numerator 1 over denominator open parentheses... close parentheses end fraction, and the 'inside function' is 2 x cubed minus 6 x plus 7

This is an integral that could also be solved by using integral fraction numerator f to the power of apostrophe open parentheses x close parentheses over denominator f open parentheses x close parentheses end fraction space d x equals ln open vertical bar f open parentheses x close parentheses close vertical bar plus C, but here we'll use substitution

Let u equals 2 x cubed minus 6 x plus 7

Differentiate the substitution and rearrange

fraction numerator d u over denominator d x end fraction equals 6 x squared minus 6

d u equals 6 open parentheses x squared minus 1 close parentheses d x space space rightwards double arrow space space open parentheses x squared minus 1 close parentheses d x equals 1 over 6 d u

Replace all parts of the integral

integral fraction numerator x squared minus 1 over denominator 2 x cubed minus 6 x plus 7 end fraction space d x equals integral 1 over u times 1 over 6 d u equals 1 over 6 integral 1 over u space d u

Integrate

1 over 6 integral 1 over u space d u equals 1 over 6 ln open vertical bar u close vertical bar plus C

Substitute x back in

integral fraction numerator x squared minus 1 over denominator 2 x cubed minus 6 x plus 7 end fraction space d x equals 1 over 6 ln open vertical bar 2 x cubed minus 6 x plus 7 close vertical bar plus C

How do I integrate more complicated functions using u-substitution?

  • The procedure here is exactly the same as for integrating simpler functions

    • However the substitution to use may not be as obvious

    • Practice questions like this to improve your integration by substitution skills

  • E.g. integral x square root of x minus 4 end root space d x

    • Note that this is not an integral that can be solved 'by inspection' (i.e. by the 'reverse chain rule')

    • Identify the substitution

      • Let u equals x minus 4

    • Differentiate the substitution and rearrange

      • fraction numerator d u over denominator d x end fraction equals 1 space space rightwards double arrow space space d u equals d x

    • Replace all parts of the integral

      • u equals x minus 4 space space rightwards double arrow space space x equals u plus 4

      • So integral x square root of x minus 4 end root space d x equals integral open parentheses u plus 4 close parentheses square root of u space d u

    • Integrate

      • integral open parentheses u plus 4 close parentheses square root of u space d u equals integral open parentheses u plus 4 close parentheses u to the power of 1 half end exponent space d u equals integral open parentheses u to the power of 3 over 2 end exponent plus 4 u to the power of 1 half end exponent close parentheses space d u equals 2 over 5 u to the power of 5 over 2 end exponent plus 8 over 3 u to the power of 3 over 2 end exponent plus C

    • Substitute x back in

      • integral x square root of x minus 4 end root space d x equals 2 over 5 open parentheses x minus 4 close parentheses to the power of 5 over 2 end exponent plus 8 over 3 open parentheses x minus 4 close parentheses to the power of 3 over 2 end exponent plus C

Worked Example

Find the indefinite integral integral fraction numerator d x over denominator square root of 16 minus 9 x squared end root end fraction.

Answer:

To spot the substitution to use here it helps to recall the standard integral integral fraction numerator d x over denominator square root of 1 minus x squared end root end fraction equals arcsin x plus straight C

First rearrange the integral slightly

integral fraction numerator d x over denominator square root of 16 minus 9 x squared end root end fraction equals integral fraction numerator d x over denominator 4 square root of 1 minus 9 over 16 x squared end root end fraction equals 1 fourth integral fraction numerator d x over denominator square root of 1 minus 9 over 16 x squared end root end fraction

Now the substitution to use is more obvious

Let u equals 3 over 4 x space space rightwards double arrow space space u squared equals 9 over 16 x squared

Differentiate the substitution and rearrange

fraction numerator d u over denominator d x end fraction equals 3 over 4 space space rightwards double arrow space space d x equals 4 over 3 d u

Replace all parts of the integral

1 fourth integral fraction numerator d x over denominator square root of 1 minus 9 over 16 x squared end root end fraction equals 1 fourth integral fraction numerator 4 over 3 d u over denominator square root of 1 minus u squared end root end fraction equals 1 third integral fraction numerator d u over denominator square root of 1 minus u squared end root end fraction

Integrate

1 third integral fraction numerator d u over denominator square root of 1 minus u squared end root end fraction equals 1 third arcsin u italic plus C

Substitute x back in

integral fraction numerator d x over denominator square root of 16 minus 9 x squared end root end fraction equals 1 third arcsin open parentheses 3 over 4 x close parentheses plus C

Evaluating definite integrals using u-substitutions

How do I evaluate definite integrals using u-substitution?

  • Definite integrals can also be solved using u-substitution

    • You just need to rewrite the integration limits in terms of u as well

  • E.g. integral subscript 4 superscript 8 x square root of x minus 4 end root space d x

    • We've already seen that this can be integrated using the substitution u equals x minus 4

      • with space d u equals d x space and space x equals u plus 4 space following from this

    • We just need to change the integral limits as well

      • When space x equals 4, space u equals 4 minus 4 equals 0

      • When space x equals 8, space u equals 8 minus 4 equals 4

    • Now when we replace all parts of the integral we get

      • integral subscript 4 superscript 8 x square root of x minus 4 end root space d x equals integral subscript 0 superscript 4 open parentheses u plus 4 close parentheses square root of u space d u

    • Integrate, then evaluate the definite integral using the u values

      • table row cell integral subscript 0 superscript 4 open parentheses u plus 4 close parentheses square root of u space d u end cell equals cell open square brackets 2 over 5 u to the power of 5 over 2 end exponent plus 8 over 3 u to the power of 3 over 2 end exponent close square brackets subscript 0 superscript 4 end cell row blank equals cell 2 over 5 times 32 plus 8 over 3 times 8 minus open parentheses 2 over 5 times 0 plus 8 over 3 times 0 close parentheses end cell row blank equals cell 512 over 15 end cell end table

    • Note that there is no need to substitute x back in to evaluate the definite integral!

Worked Example

Evaluate the definite integral integral subscript 1 superscript 2 fraction numerator 2 x plus 3 over denominator 3 x squared plus 9 x minus 5 end fraction space d x.

Answer:

Choose the substitution

Let u equals 3 x squared plus 9 x minus 5

Differentiate the substitution and rearrange

fraction numerator d u over denominator d x end fraction equals 6 x plus 9

d u equals 3 open parentheses 2 x plus 3 close parentheses d x space space rightwards double arrow space space open parentheses 2 x plus 3 close parentheses d x equals 1 third d u

Find the integration limits in terms of u

When space x equals 1, space u equals 3 open parentheses 1 close parentheses squared plus 9 open parentheses 1 close parentheses minus 5 equals 7

When space x equals 2, space u equals 3 open parentheses 2 close parentheses squared plus 9 open parentheses 2 close parentheses minus 5 equals 25

Replace all parts of the integral, including the integration limits

integral subscript 1 superscript 2 fraction numerator 2 x plus 3 over denominator 3 x squared plus 9 x minus 5 end fraction space d x equals integral subscript 7 superscript 25 1 over u times 1 third d u equals 1 third integral subscript 7 superscript 25 1 over u space d u

Integrate and evaluate the definite integral

1 third integral subscript 7 superscript 25 1 over u space d u equals 1 third open square brackets ln u close square brackets subscript 7 superscript 25 equals 1 third open parentheses ln 25 minus ln 7 close parentheses

Use laws of logarithms to simplify the final answer

integral subscript 1 superscript 2 fraction numerator 2 x plus 3 over denominator 3 x squared plus 9 x minus 5 end fraction space d x equals 1 third ln open parentheses 25 over 7 close parentheses

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Roger B

Author: Roger B

Expertise: Maths

Roger's teaching experience stretches all the way back to 1992, and in that time he has taught students at all levels between Year 7 and university undergraduate. Having conducted and published postgraduate research into the mathematical theory behind quantum computing, he is more than confident in dealing with mathematics at any level the exam boards might throw at you.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.