Integration Using Partial Fractions (College Board AP® Calculus BC)

Study Guide

Dan Finlay

Written by: Dan Finlay

Reviewed by: Mark Curtis

Updated on

Integration using partial fractions

What are partial fractions?

  • A rational function fraction numerator f open parentheses x close parentheses over denominator g open parentheses x close parentheses end fraction can be written as the sum of partial fractions provided:

    • f open parentheses x close parentheses and g open parentheses x close parentheses are polynomials

    • the degree of f is less than the degree of g

  • Each partial fraction has the following properties:

    • the denominator is a factor of g open parentheses x close parentheses

    • the degree of the denominator will be less than the degree of g

    • the degree of the numerator will be less than the degree of the denominator

  • In this course g open parentheses x close parentheses will be a product of distinct linear factors

    • Usually only two factors

    • The numerators of the partial fractions will be constant

  • For example, fraction numerator 8 x plus 10 over denominator open parentheses x plus 3 close parentheses open parentheses 2 x minus 1 close parentheses end fraction equals fraction numerator 2 over denominator x plus 3 end fraction plus fraction numerator 4 over denominator 2 x minus 1 end fraction

How can I write a rational function as a sum of partial fractions?

  • STEP 1
    Factorize the denominator

    • e.g. fraction numerator 2 x minus 17 over denominator x squared minus 3 x minus 10 end fraction equals fraction numerator 2 x minus 17 over denominator open parentheses x plus 2 close parentheses open parentheses x minus 5 close parentheses end fraction

  • STEP 2
    Write as a sum of partial fractions

    • The numerators are unknown constants

    • The denominators are the linear factors

      • e.g. fraction numerator 2 x minus 17 over denominator open parentheses x plus 2 close parentheses open parentheses x minus 5 close parentheses end fraction equals fraction numerator A over denominator x plus 2 end fraction plus fraction numerator B over denominator x minus 5 end fraction

  • STEP 3
    Multiply both sides by the denominator of the original fraction

    • This gets rid of all the fractions

      • e.g. fraction numerator open parentheses 2 x minus 17 close parentheses up diagonal strike open parentheses x plus 2 close parentheses end strike up diagonal strike open parentheses x minus 5 close parentheses end strike over denominator up diagonal strike open parentheses x plus 2 close parentheses end strike up diagonal strike open parentheses x minus 5 close parentheses end strike end fraction equals fraction numerator A up diagonal strike open parentheses x plus 2 close parentheses end strike open parentheses x minus 5 close parentheses over denominator up diagonal strike x plus 2 end strike end fraction plus fraction numerator B open parentheses x plus 2 close parentheses up diagonal strike open parentheses x minus 5 close parentheses end strike over denominator up diagonal strike x minus 5 end strike end fraction

      • which simplifies to 2 x minus 17 equals A open parentheses x minus 5 close parentheses plus B open parentheses x plus 2 close parentheses

  • STEP 4
    Find the values of the unknown constants

    • One method is to substitute the roots of the denominators into the equation

      • e.g. Substitute x equals 5

        table row x equals cell 5 colon end cell row cell 2 open parentheses 5 close parentheses minus 17 end cell equals cell A open parentheses 5 minus 5 close parentheses plus B open parentheses 5 plus 2 close parentheses end cell row cell negative 7 end cell equals cell 7 B end cell row cell negative 1 end cell equals B end table

      • e.g. Substitute x equals negative 2

        table row x equals cell negative 2 colon end cell row cell 2 open parentheses negative 2 close parentheses minus 17 end cell equals cell A open parentheses negative 2 minus 5 close parentheses plus B open parentheses negative 2 plus 2 close parentheses end cell row cell negative 21 end cell equals cell negative 7 A end cell row 3 equals A end table

    • An alternative method is to compare the coefficients of the equation

      • e.g. Collect like-terms on the right-hand side
        2 x minus 17 equals open parentheses A plus B close parentheses x plus open parentheses negative 5 A plus 2 B close parentheses

      • Form two simultaneous equations

        table row cell A plus B end cell equals 2 row cell negative 5 A plus 2 B end cell equals cell negative 17 end cell end table

      • Solve to get A equals 3 and B equals negative 1

  • STEP 5
    Write out the partial fractions

    • e.g. fraction numerator 2 x minus 17 over denominator open parentheses x plus 2 close parentheses open parentheses x minus 5 close parentheses end fraction equals fraction numerator 3 over denominator x plus 2 end fraction minus fraction numerator 1 over denominator x minus 5 end fraction

Can I use partial fractions if the degree of the numerator is not smaller than the degree of the denominator?

  • You can use long division to write a rational function as the sum of a polynomial and another rational function

    • e.g. fraction numerator 2 x cubed minus x squared minus x minus 7 over denominator x squared minus x minus 6 end fraction equals 2 x plus 1 plus fraction numerator 12 x minus 1 over denominator x squared minus x minus 6 end fraction

  • You can then write the new rational function as a sum of partial fractions

    • e.g. fraction numerator 2 x cubed minus x squared minus x minus 7 over denominator x squared minus x minus 6 end fraction equals 2 x plus 1 plus fraction numerator 7 over denominator x minus 3 end fraction plus fraction numerator 5 over denominator x plus 2 end fraction

How do I integrate using partial fractions?

  • It is straightforward to integrate a rational function if it is written as the sum of partial fractions

  • Integrate each partial fraction separately

    • integral fraction numerator 1 over denominator a x plus b end fraction d x equals 1 over a ln open vertical bar a x plus b close vertical bar plus C

Examiner Tips and Tricks

You might have to write your final answer in a certain form or identify the correct form from the multiple-choice options. Make sure you know the laws of logarithms:

  • ln A plus ln B equals ln open parentheses A B close parentheses

  • ln A minus ln B equals ln open parentheses A over B close parentheses

  • ln open parentheses A to the power of n close parentheses equals n ln A

Worked Example

Find the indefinite integral integral fraction numerator 2 open parentheses x minus 4 close parentheses over denominator 2 x squared plus 5 x minus 3 end fraction d x. Write the answer in the form ln open vertical bar f open parentheses x close parentheses close vertical bar plus C.

Answer:

STEP 1
Factorize the denominator

fraction numerator 2 open parentheses x minus 4 close parentheses over denominator 2 x squared plus 5 x minus 3 end fraction equals fraction numerator 2 open parentheses x minus 4 close parentheses over denominator open parentheses x plus 3 close parentheses open parentheses 2 x minus 1 close parentheses end fraction

STEP 2
Write as a sum of partial fractions

fraction numerator 2 open parentheses x minus 4 close parentheses over denominator open parentheses x plus 3 close parentheses open parentheses 2 x minus 1 close parentheses end fraction equals fraction numerator A over denominator x plus 3 end fraction plus fraction numerator B over denominator 2 x minus 1 end fraction

STEP 3
Multiply both sides by the denominator of the original fraction

table row cell fraction numerator 2 open parentheses x minus 4 close parentheses up diagonal strike open parentheses x plus 3 close parentheses end strike up diagonal strike open parentheses 2 x minus 1 close parentheses end strike over denominator up diagonal strike open parentheses x plus 3 close parentheses end strike up diagonal strike open parentheses 2 x minus 1 close parentheses end strike end fraction end cell equals cell fraction numerator A up diagonal strike open parentheses x plus 3 close parentheses end strike open parentheses 2 x minus 1 close parentheses over denominator up diagonal strike x plus 3 end strike end fraction plus fraction numerator B open parentheses x plus 3 close parentheses up diagonal strike open parentheses 2 x minus 1 close parentheses end strike over denominator up diagonal strike 2 x minus 1 end strike end fraction end cell row cell 2 open parentheses x minus 4 close parentheses end cell equals cell A open parentheses 2 x minus 1 close parentheses plus B open parentheses x plus 3 close parentheses end cell end table

STEP 4
Find the values of the unknown constants

table row x equals cell 1 half colon end cell row cell 2 open parentheses 1 half minus 4 close parentheses end cell equals cell A open parentheses 2 open parentheses 1 half close parentheses minus 1 close parentheses plus B open parentheses 1 half plus 3 close parentheses end cell row cell negative 7 end cell equals cell 7 over 2 B end cell row cell negative 2 end cell equals B end table

table row x equals cell negative 3 colon end cell row cell 2 open parentheses negative 3 minus 4 close parentheses end cell equals cell A open parentheses 2 open parentheses negative 3 close parentheses minus 1 close parentheses plus B open parentheses negative 3 plus 3 close parentheses end cell row cell negative 14 end cell equals cell negative 7 A end cell row 2 equals A end table

STEP 5
Write out the partial fractions and integrate

table row cell integral fraction numerator 2 open parentheses x minus 4 close parentheses over denominator 2 x squared plus 5 x minus 3 end fraction d x end cell equals cell integral fraction numerator 2 over denominator x plus 3 end fraction d x minus integral fraction numerator 2 over denominator 2 x minus 1 end fraction d x end cell row blank equals cell 2 ln open vertical bar x plus 3 close vertical bar minus 2 over 2 ln open vertical bar 2 x minus 1 close vertical bar plus C end cell row blank equals cell 2 ln open vertical bar x plus 3 close vertical bar minus ln open vertical bar 2 x minus 1 close vertical bar plus C end cell end table

Use the laws of logarithms to write the answer in the given form

table row cell integral fraction numerator 2 open parentheses x minus 4 close parentheses over denominator 2 x squared plus 5 x minus 3 end fraction d x end cell equals cell ln open vertical bar fraction numerator open parentheses x plus 3 close parentheses squared over denominator 2 x minus 1 end fraction close vertical bar plus C end cell end table

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Mark Curtis

Author: Mark Curtis

Expertise: Maths

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.