Derivatives & Antiderivatives (College Board AP® Calculus AB)

Study Guide

Test yourself
Roger B

Written by: Roger B

Reviewed by: Dan Finlay

Derivatives & antiderivatives

How can I find the indefinite integrals of common functions?

  • Because differentiation and integration are inverse operations

    • you can 'reverse' what you know about derivatives to find indefinite integrals

  • I.e. if f to the power of apostrophe open parentheses x close parentheses equals g open parentheses x close parentheses

    • then integral g open parentheses x close parentheses space d x equals f open parentheses x close parentheses plus C

  • This means that all your derivative results for common functions

    • have indefinite integral equivalents

Indefinite integrals of powers of x

  • fraction numerator d over denominator d x end fraction open parentheses x to the power of n close parentheses equals n x to the power of n minus 1 end exponent therefore

    • integral x to the power of n space d x equals fraction numerator 1 over denominator n plus 1 end fraction x to the power of n plus 1 end exponent plus C comma space space n not equal to negative 1

      • Note that you can't integrate x to the power of negative 1 end exponent equals 1 over x using this rule

        • The denominator in the fraction would become zero

        • 1 over x must be integrated using logarithms

  • Also note these two special cases

    • integral k space d x equals k x plus C, where k is a constant

    • integral 0 space d x equals C

Worked Example

Find the indefinite integral integral x to the power of 10 space d x.

Answer:

Use integral x to the power of n space d x equals fraction numerator 1 over denominator n plus 1 end fraction x to the power of n plus 1 end exponent plus C comma space space n not equal to negative 1

integral x to the power of 10 space d x equals fraction numerator 1 over denominator 10 plus 1 end fraction x to the power of 10 plus 1 end exponent plus C

integral x to the power of 10 space d x equals 1 over 11 x to the power of 11 plus C

Indefinite integrals of exponentials and 1/x

  • fraction numerator d over denominator d x end fraction open parentheses e to the power of x close parentheses equals e to the power of x space and space fraction numerator d over denominator d x end fraction open parentheses e to the power of k x end exponent close parentheses equals k e to the power of k x end exponent space therefore

    • integral e to the power of x space d x equals e to the power of x plus C

    • integral e to the power of k x end exponent space d x equals 1 over k e to the power of k x end exponent plus C

  • fraction numerator d over denominator d x end fraction open parentheses a to the power of x close parentheses equals a to the power of x space ln a space and space fraction numerator d over denominator d x end fraction open parentheses a to the power of k x end exponent close parentheses equals a to the power of k x end exponent space k space ln a space therefore

    • integral a to the power of x space d x equals fraction numerator 1 over denominator ln a end fraction space a to the power of x plus C

    • integral a to the power of k x end exponent space d x equals fraction numerator 1 over denominator k ln a end fraction space a to the power of k x end exponent plus C

  • fraction numerator d over denominator d x end fraction open parentheses ln x close parentheses equals 1 over x space therefore

    • integral 1 over x space d x equals ln open vertical bar x close vertical bar plus C

      • Don't forget the modulus (absolute value) sign around the x

        • This allows the integral to be valid for negative values of x as well as for positive values

  • In the above formulae, k is a real number constant and a is a positive real number constant

Worked Example

Find the indefinite integral integral e to the power of 7 x end exponent space d x.

Answer:

Use integral e to the power of k x end exponent space d x equals 1 over k e to the power of k x end exponent plus C

integral e to the power of 7 x end exponent space d x equals 1 over 7 e to the power of 7 x end exponent plus C

Indefinite integrals of trigonometric functions

  • fraction numerator d over denominator d x end fraction open parentheses sin x close parentheses equals cos x space and space fraction numerator d over denominator d x end fraction open parentheses sin k x close parentheses equals k cos k x space therefore

    • integral cos x space d x equals sin x plus C

    • integral cos k x space d x equals 1 over k sin k x plus C

  • fraction numerator d over denominator d x end fraction open parentheses cos x close parentheses equals negative sin x space and space fraction numerator d over denominator d x end fraction open parentheses cos k x close parentheses equals negative k sin k x space therefore

    • integral sin x space d x equals negative cos x plus C

    • integral sin k x space d x equals negative 1 over k cos k x plus C

  • fraction numerator d over denominator d x end fraction open parentheses tan x close parentheses equals sec squared x space and space fraction numerator d over denominator d x end fraction open parentheses tan k x close parentheses equals k sec squared k x space therefore

    • integral sec squared x space d x equals tan x plus C

    • integral sec squared k x space d x equals 1 over k tan k x plus C

  • In the above formulae, k is a real number constant

Worked Example

Find the following indefinite integrals:

(a) integral sin 4 x space d x

Answer:

Use integral sin k x space d x equals negative 1 over k cos k x plus C

integral sin 4 x space d x equals negative 1 fourth cos 4 x plus C

(b) integral open parentheses fraction numerator 1 over denominator cos 3 x end fraction close parentheses squared space d x

Answer:

Remember sec x equals fraction numerator 1 over denominator cos x end fraction

open parentheses fraction numerator 1 over denominator cos 3 x end fraction close parentheses squared equals open parentheses sec 3 x close parentheses squared equals sec squared 3 x

Use integral sec squared k x space d x equals 1 over k tan k x plus C

integral open parentheses fraction numerator 1 over denominator cos 3 x end fraction close parentheses squared space d x equals integral sec squared 3 x space d x equals 1 third tan 3 x plus C

Indefinite integrals of reciprocal trigonometric functions

  • fraction numerator d over denominator d x end fraction open parentheses sec x close parentheses equals tan x space sec x space and space fraction numerator d over denominator d x end fraction open parentheses sec k x close parentheses equals k tan k x space sec k x space therefore

    • integral tan x space sec x space d x equals sec x plus C

    • integral tan k x space sec k x space d x equals 1 over k sec k x plus C

  • fraction numerator d over denominator d x end fraction open parentheses csc x close parentheses equals negative cot x space csc x space and space fraction numerator d over denominator d x end fraction open parentheses csc k x close parentheses equals negative k cot k x space csc k x space therefore

    • integral cot x space csc x space d x equals negative csc x plus C

    • integral cot k x space csc k x space d x equals negative 1 over k csc k x plus C

  • fraction numerator d over denominator d x end fraction open parentheses cot x close parentheses equals negative csc squared x space and space fraction numerator d over denominator d x end fraction open parentheses co t k x close parentheses equals negative k csc squared k x space therefore

    • integral csc squared x space d x equals negative cot x plus C

    • integral csc squared k x space d x equals negative 1 over k cot k x plus C

  • In the above formulae, k is a real number constant

Worked Example

Find the indefinite integral integral cot 5 x space csc 5 x space d x

Use integral cot k x space csc k x space d x equals negative 1 over k csc k x plus C

integral cot 5 x space csc 5 x space d x equals negative 1 fifth csc 5 x plus C

Indefinite integrals using inverse trigonometric functions

  • fraction numerator d over denominator d x end fraction open parentheses arcsin x close parentheses equals fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction comma space space minus 1 less than x less than 1 comma space therefore

    • integral fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction space d x equals arcsin x plus C comma space space minus 1 less than x less than 1

  • fraction numerator d over denominator d x end fraction open parentheses arc cos x close parentheses equals negative fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction comma space space minus 1 less than x less than 1 comma space therefore

    • integral fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction space d x equals negative arc cos x plus C comma space space minus 1 less than x less than 1

  • You can see that integral fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction space d x is either arcsin x plus C or negative arccos x plus C

    • Usually arcsin is used when finding indefinite integrals of this form

  • fraction numerator d over denominator d x end fraction open parentheses arc tan x close parentheses equals fraction numerator 1 over denominator 1 plus x squared end fraction space therefore

    • integral fraction numerator 1 over denominator 1 plus x squared end fraction space d x equals arc tan x plus C

Table of common indefinite integrals

In the table below, k is a real number constant and a is a positive real number constant

Standard derivative

Corresponding indefinite integral

fraction numerator d over denominator d x end fraction open parentheses x to the power of n close parentheses equals n x to the power of n minus 1 end exponent

integral x to the power of n space d x equals fraction numerator 1 over denominator n plus 1 end fraction x to the power of n plus 1 end exponent plus C comma space space n not equal to negative 1

fraction numerator d over denominator d x end fraction open parentheses k x close parentheses equals k

integral k space d x equals k x plus C

derivative of a constant is zero

integral 0 space d x equals C

space fraction numerator d over denominator d x end fraction open parentheses e to the power of k x end exponent close parentheses equals k e to the power of x space

integral e to the power of k x end exponent space d x equals 1 over k e to the power of k x end exponent plus C

space fraction numerator d over denominator d x end fraction open parentheses a to the power of k x end exponent close parentheses equals a to the power of k x end exponent space k space ln a space

integral a to the power of k x end exponent space d x equals fraction numerator 1 over denominator k ln a end fraction space a to the power of k x end exponent plus C

fraction numerator d over denominator d x end fraction open parentheses ln x close parentheses equals 1 over x space

integral 1 over x space d x equals ln open vertical bar x close vertical bar plus C

space fraction numerator d over denominator d x end fraction open parentheses sin k x close parentheses equals k cos k x space

integral cos k x space d x equals 1 over k sin k x plus C

space fraction numerator d over denominator d x end fraction open parentheses cos k x close parentheses equals negative k sin k x space

integral sin k x space d x equals negative 1 over k cos k x plus C

space fraction numerator d over denominator d x end fraction open parentheses tan k x close parentheses equals k sec squared k x space

integral sec squared k x space d x equals 1 over k tan k x plus C

space fraction numerator d over denominator d x end fraction open parentheses sec k x close parentheses equals k tan k x space sec k x space

integral tan k x space sec k x space d x equals 1 over k sec k x plus C

space fraction numerator d over denominator d x end fraction open parentheses csc k x close parentheses equals negative k cot k x space csc k x space

integral cot k x space csc k x space d x equals negative 1 over k csc k x plus C

space fraction numerator d over denominator d x end fraction open parentheses co t k x close parentheses equals negative k csc squared k x space

integral csc squared k x space d x equals negative 1 over k cot k x plus C

fraction numerator d over denominator d x end fraction open parentheses arcsin x close parentheses equals fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction comma space space minus 1 less than x less than 1

integral fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction space d x equals arcsin x plus C comma space space minus 1 less than x less than 1

fraction numerator d over denominator d x end fraction open parentheses arc tan x close parentheses equals fraction numerator 1 over denominator 1 plus x squared end fraction space

integral fraction numerator 1 over denominator 1 plus x squared end fraction space d x equals arc tan x plus C

Last updated:

You've read 0 of your 5 free study guides this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Roger B

Author: Roger B

Expertise: Maths

Roger's teaching experience stretches all the way back to 1992, and in that time he has taught students at all levels between Year 7 and university undergraduate. Having conducted and published postgraduate research into the mathematical theory behind quantum computing, he is more than confident in dealing with mathematics at any level the exam boards might throw at you.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.