Multiple Areas (College Board AP® Calculus AB)

Study Guide

Roger B

Written by: Roger B

Reviewed by: Dan Finlay

Using multiple definite integrals to find multiple areas

How do I find areas of enclosed regions partly above and partly below the x-axis using multiple integrals?

  • If an area between a curve and the x-axis is partly above and partly below the x-axis

    • then you need to be careful when calculating areas

  • Consider the diagram below

Graph of the function f(x) with areas R1 and R2 shaded between points a, b, and c on the x-axis. R1 is above the x-axis and R2 is below the x-axis. Includes a mathematical explanation in a grey box of how to calculate the areas using definite integrals.
  • The total area cannot be found using integral subscript a superscript c f open parentheses x close parentheses space d x

    • Instead find integral subscript a superscript b f open parentheses x close parentheses space d x

    • and add the modulus (absolute value) of integral subscript b superscript c f open parentheses x close parentheses space d x

      • I.e. total space area equals integral subscript a superscript b f open parentheses x close parentheses space d x plus open vertical bar integral subscript b superscript c f open parentheses x close parentheses space d x close vertical bar

  • In general, calculate areas above and below the axis separately

    • Add together the integrals for the areas above

    • and the modulus of the integrals for the areas below

  • For example, to find the total area of the regions enclosed by the x-axis and the curve y equals x cubed minus 12 x squared plus 35 x:

An example of using integrals to work out the area between the x-axis and the curve y=x^3-12x^2+35x.  The area is broken into two regions: region R1 above the x-axis, and region R2 below the x-axis.

How do I find total areas between two curves using multiple integrals?

  • If curves intersect at more than two points

    • then you need to be careful when calculating the total area they enclose

Graph showing areas between curves f(x) and g(x) from a to b (labeled region R1) and b to c (labeled region R2). Integrals for R1 and R2 are given below the graph.
  • Calculate areas of different regions separately

    • In the integral for each region

      • make sure the 'bottom' function (closer to the x-axis)

      • is being subtracted from the 'top' function (further from the x-axis)

Worked Example

The shaded region in the diagram below is the region enclosed by the curves with equationsspace y equals f left parenthesis x right parenthesis and y equals g left parenthesis x right parenthesis where

space f left parenthesis x right parenthesis equals left parenthesis x minus 2 right parenthesis left parenthesis x minus 3 right parenthesis squared

space g left parenthesis x right parenthesis equals x squared minus 5 x plus 6  

Graph showing the functions y=f(x) and y=g(x) intersecting, with a two-part shaded region between them.

Find the total area of the shaded region.

Answer:

Note first of all that for calculating areas between two curves, it doesn't matter that the areas are partially above and partially below the x-axis

Start by finding the x-values of the points of intersection of the two curves

table row cell f open parentheses x close parentheses end cell equals cell g open parentheses x close parentheses end cell row cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses squared end cell equals cell x squared minus 5 x plus 6 end cell row cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses squared end cell equals cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses end cell end table

This can be solved by moving everything to one side of the equation and factorizing further

table row cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses squared minus open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses end cell equals 0 row cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses open parentheses open parentheses x minus 3 close parentheses minus 1 close parentheses end cell equals 0 row cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses open parentheses x minus 4 close parentheses end cell equals 0 end table

x equals 2 comma space space x equals 3 comma space space x equals 4

Those will be the integration limits for the two integrals we need

Between x equals 2 and x equals 3, y equals f open parentheses x close parentheses is the 'top' function, so

table row cell integral subscript 2 superscript 3 open parentheses f open parentheses x close parentheses minus g open parentheses x close parentheses close parentheses space d x end cell equals cell integral subscript 2 superscript 3 open parentheses open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses squared minus open parentheses x squared minus 5 x plus 6 close parentheses close parentheses space d x end cell row blank equals cell integral subscript 2 superscript 3 open parentheses x cubed minus 9 x squared plus 26 x minus 24 close parentheses space d x end cell row blank equals cell open square brackets 1 fourth x to the power of 4 minus 3 x cubed plus 13 x squared minus 24 x close square brackets subscript 2 superscript 3 end cell row blank equals cell open parentheses 81 over 4 minus 81 plus 117 minus 72 close parentheses minus open parentheses 4 minus 24 plus 52 minus 48 close parentheses end cell row blank equals cell 1 fourth end cell end table

That is the area for the part of the region on the left

Between x equals 3 and x equals 4, y equals g open parentheses x close parentheses is the 'top' function, so

table row cell integral subscript 3 superscript 4 open parentheses g open parentheses x close parentheses minus f open parentheses x close parentheses close parentheses space d x end cell equals cell integral subscript 3 superscript 4 open parentheses open parentheses x squared minus 5 x plus 6 close parentheses minus open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses squared close parentheses space d x end cell row blank equals cell integral subscript 3 superscript 4 open parentheses negative x cubed plus 9 x squared minus 26 x plus 24 close parentheses space d x end cell row blank equals cell open square brackets negative 1 fourth x to the power of 4 plus 3 x cubed minus 13 x squared plus 24 x close square brackets subscript 3 superscript 4 end cell row blank equals cell open parentheses negative 64 plus 192 minus 208 plus 96 close parentheses minus open parentheses negative 81 over 4 plus 81 minus 117 plus 72 close parentheses end cell row blank equals cell 1 fourth end cell end table

That is the area for the part of the region on the right

Add together to get the total area

1 fourth plus 1 fourth equals 1 half

The total area is 1 half units squared

Using absolute value to find multiple areas

How do I find areas of regions partly above and partly below the x-axis using absolute value?

  • If you are using your calculator to work out area integrals you can use

    • Area equals integral subscript a superscript b open vertical bar f open parentheses x close parentheses close vertical bar space d x

      • I.e. integrate the absolute value (modulus) of the function

  • This will find the area

    • between the curve y equals f open parentheses x close parentheses and the x-axis

    • between x equals a and x equals b

  • Because the absolute value changes any negative parts of f open parentheses x close parentheses into their positive equivalents

    • you don't need to worry about different parts of the area being above or below the x-axis

Examiner Tips and Tricks

Even if you are using your calculator to work out the value of an integral on the exam

  • you should write down the integral you are evaluating, to make sure your answer gets full credit

Worked Example

The shaded region in the diagram below is the region enclosed by the x-axis and the graph of the function y equals x cubed minus 12 x squared plus 35 x.

Graph showing a shaded area enclosed by a curve and the x-axis. Part of the area is below the x-axis, and part of it is above the x-axis.

Find the total area of the shaded region.

Answer:

Start by finding the points where the graph intersects the x-axis

table row cell x cubed minus 12 x squared plus 35 x end cell equals 0 row cell x open parentheses x minus 5 close parentheses open parentheses x minus 7 close parentheses end cell equals 0 end table

x equals 0 comma space space x equals 5 comma space space x equals 7

To work this out by hand we'd need to find the two areas separately, between x equals 0 and x equals 5 (the bit above the x-axis), and between x equals 5 and x equals 7 (the bit below the x-axis)

Instead we can work out the entire area between x equals 0 and x equals 7 with one integral using absolute value

Area equals integral subscript 0 superscript 7 open vertical bar x cubed minus 12 x squared plus 35 x close vertical bar space d x

That integral can be evaluated using your graphing calculator

table row cell integral subscript 0 superscript 7 open vertical bar x cubed minus 12 x squared plus 35 x close vertical bar space d x end cell equals cell 407 over 4 equals 101.75 end cell end table

Total area = 101.75 units squared

How do I find total areas between two curves using absolute value?

  • If you are using your calculator to work out area integrals you can use

    • Area equals integral subscript a superscript b open vertical bar f open parentheses x close parentheses minus g open parentheses x close parentheses close vertical bar space d x

      • I.e. integrate the absolute value (modulus) of the function

  • This will find the area

    • between the curve y equals f open parentheses x close parentheses and the curve y equals g open parentheses x close parentheses

    • between x equals a and x equals b

  • Because the absolute value changes any negative parts of f open parentheses x close parentheses minus g open parentheses x close parentheses into their positive equivalents

    • you don't need to worry about which function is 'on top' in different parts of the area

      • You also don't need to worry about the order of the functions inside the absolute value

        • open vertical bar f open parentheses x close parentheses minus g open parentheses x close parentheses close vertical bar equals open vertical bar g open parentheses x close parentheses minus f open parentheses x close parentheses close vertical bar

Worked Example

The shaded region in the diagram below is the region enclosed by the curves with equationsspace y equals f left parenthesis x right parenthesis and space y equals g left parenthesis x right parenthesis where

space f left parenthesis x right parenthesis equals left parenthesis x minus 2 right parenthesis left parenthesis x minus 3 right parenthesis squared

space g left parenthesis x right parenthesis equals x squared minus 5 x plus 6  

Graph showing the functions y=f(x) and y=g(x) intersecting, with a two=part shaded region between them.

Find the total area of the shaded region.

Answer:

Start by finding the x-values of the points of intersection of the two curves

table row cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses squared end cell equals cell x squared minus 5 x plus 6 end cell row cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses squared end cell equals cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses end cell row cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses squared minus open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses end cell equals 0 row cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses open parentheses open parentheses x minus 3 close parentheses minus 1 close parentheses end cell equals 0 row cell open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses open parentheses x minus 4 close parentheses end cell equals 0 end table

x equals 2 comma space space x equals 3 comma space space x equals 4

To work this out by hand we'd need to find the two areas separately, between x equals 2 and x equals 3 (where y equals f open parentheses x close parentheses is on top), and between x equals 3 and x equals 4 (where y equals g open parentheses x close parentheses is on top)

Instead we can work out the entire area between x equals 2 and x equals 4 with one integral using absolute value

table row Area equals cell integral subscript 2 superscript 4 open vertical bar f open parentheses x close parentheses minus g open parentheses x close parentheses close vertical bar space d x end cell row blank equals cell integral subscript 2 superscript 4 open vertical bar open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses squared minus open parentheses x squared minus 5 x plus 6 close parentheses close vertical bar space d x end cell end table

That integral can be evaluated using your graphing calculator

table row cell integral subscript 2 superscript 4 open vertical bar open parentheses x minus 2 close parentheses open parentheses x minus 3 close parentheses squared minus open parentheses x squared minus 5 x plus 6 close parentheses close vertical bar space d x end cell equals cell 1 half equals 0.5 end cell end table

Total area = 0.5 units squared

Last updated:

You've read 0 of your 5 free study guides this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Roger B

Author: Roger B

Expertise: Maths

Roger's teaching experience stretches all the way back to 1992, and in that time he has taught students at all levels between Year 7 and university undergraduate. Having conducted and published postgraduate research into the mathematical theory behind quantum computing, he is more than confident in dealing with mathematics at any level the exam boards might throw at you.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.