Second Derivatives of Implicit Functions (College Board AP® Calculus AB)

Study Guide

Test yourself
Jamie Wood

Written by: Jamie Wood

Reviewed by: Dan Finlay

Second derivatives of implicit functions

How do I find the second derivative of an implicit function?

  • First make sure you are comfortable with the content covered in the 'Implicit Differentiation' study guide

    • This involves being able to find the derivative of a function defined implicitly, using the chain rule

  • We are able to find the second derivative, fraction numerator d squared y over denominator d x squared end fraction, by differentiating the expression for the first derivative, fraction numerator d y over denominator d x end fraction

  • Consider finding the second derivative of x squared plus y squared equals 4 x

  • Find the first derivative, this is shown in the Implicit Differentiation study guide to be

    • fraction numerator d y over denominator d x end fraction equals fraction numerator 2 minus x over denominator y end fraction

  • To find the second derivative, differentiate both sides with respect to x

    • fraction numerator d over denominator d x end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses equals fraction numerator d over denominator d x end fraction open parentheses fraction numerator 2 minus x over denominator y end fraction close parentheses

  • The derivative of fraction numerator d y over denominator d x end fraction with respect to x is fraction numerator d squared y over denominator d x squared end fraction

    • fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator d over denominator d x end fraction open parentheses fraction numerator 2 minus x over denominator y end fraction close parentheses

  • The right hand side can then be differentiated with respect to x, in this case using the quotient rule, open parentheses u over v close parentheses to the power of apostrophe equals fraction numerator u to the power of apostrophe v space minus space u v to the power of apostrophe over denominator v squared end fraction

    • u equals 2 minus x and v equals y

  • Differentiate u and v with respect to x, remember to apply the chain rule when differentiating y

    • u to the power of apostrophe equals negative 1 and v to the power of apostrophe equals fraction numerator d y over denominator d x end fraction

  • Applying the quotient rule to the right hand side

    • fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator negative 1 times y space minus space open parentheses 2 minus x close parentheses times fraction numerator d y over denominator d x end fraction over denominator y squared end fraction

  • If your answer references the first derivative, substitute it in

    • We know from before that fraction numerator d y over denominator d x end fraction equals fraction numerator 2 minus x over denominator y end fraction

    • fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator negative 1 times y space minus space open parentheses 2 minus x close parentheses times open parentheses fraction numerator 2 minus x over denominator y end fraction close parentheses over denominator y squared end fraction

  • This is the correct second derivative, but it can be simplified

    • fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator negative y space minus space open parentheses 2 minus x close parentheses squared over y over denominator y squared end fraction

  • Writing with a common denominator can help simplify

    • fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator negative y over denominator y squared end fraction minus open parentheses 2 minus x close parentheses squared over y cubed equals fraction numerator negative y squared over denominator y cubed end fraction minus open parentheses 2 minus x close parentheses squared over y cubed

  • fraction numerator d squared y over denominator d x squared end fraction equals negative fraction numerator y squared plus open parentheses 2 minus x close parentheses squared over denominator y cubed end fraction

  • This is the final answer, but expressions like this can be written in several different ways,

    • E.g. by factoring out negative signs in a different place

Examiner Tips and Tricks

Remember that:

  • The derivative of y with respect to x is fraction numerator d y over denominator d x end fraction

  • The derivative of fraction numerator d y over denominator d x end fraction with respect to x is fraction numerator d squared y over denominator d x squared end fraction

Worked Example

Show that the second derivative of sin space x plus cos space y equals 0.8 can be written as:

fraction numerator d squared y over denominator d x squared end fraction equals negative fraction numerator sin space x space sin squared y space plus space cos squared x space cos space y over denominator sin cubed y end fraction

Answer:

Find the first derivative by differentiating both sides with respect to x

table row cell fraction numerator d over denominator d x end fraction open parentheses sin space x plus cos space y close parentheses end cell equals cell fraction numerator d over denominator d x end fraction open parentheses 0.8 close parentheses end cell row cell fraction numerator d over denominator d x end fraction sin space x plus fraction numerator d over denominator d x end fraction cos space y end cell equals cell fraction numerator d over denominator d x end fraction open parentheses 0.8 close parentheses end cell end table

Remember to use the chain rule when differentiating cos space y with respect to x

table row cell cos space x plus negative sin space y times fraction numerator d y over denominator d x end fraction end cell equals 0 row cell fraction numerator d y over denominator d x end fraction end cell equals cell fraction numerator cos space x over denominator sin space y end fraction end cell end table

This could instead be simplified to cos space x space csc space y, depending on whether you would prefer to apply the quotient rule to fraction numerator cos space x over denominator sin space y end fraction or the product rule to cos space x space csc space y for the next part

To find the second derivative, differentiate both sides with respect to x again

table row cell fraction numerator d over denominator d x end fraction open parentheses fraction numerator d y over denominator d x end fraction close parentheses end cell equals cell fraction numerator d over denominator d x end fraction open parentheses fraction numerator cos space x over denominator sin space y end fraction close parentheses end cell row cell fraction numerator d squared y over denominator d x squared end fraction end cell equals cell fraction numerator d over denominator d x end fraction open parentheses fraction numerator cos space x over denominator sin space y end fraction close parentheses end cell row blank blank blank end table

Apply the quotient rule to the right hand side, remember to apply the chain rule when differentiating sin space y with respect to x

open parentheses u over v close parentheses to the power of apostrophe equals fraction numerator u to the power of apostrophe v minus u v to the power of apostrophe over denominator v squared end fraction

u equals cos space x v equals sin space y

u to the power of apostrophe equals negative sin space x v to the power of apostrophe equals cos space y times fraction numerator d y over denominator d x end fraction

fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator negative sin space x times sin space y space minus space cos space x times cos space y times fraction numerator d y over denominator d x end fraction over denominator sin squared y end fraction

Substitute in the expression for fraction numerator d y over denominator d x end fraction found previously, table row cell fraction numerator d y over denominator d x end fraction end cell equals cell fraction numerator cos space x over denominator sin space y end fraction end cell end table

fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator negative sin space x times sin space y space minus space cos space x times cos space y times open parentheses fraction numerator cos space x over denominator sin space y end fraction close parentheses over denominator sin squared y end fraction

Now we need to rearrange into the form given in the question

Write as two fractions to see if they can be simplified

fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator negative sin space x space sin space y over denominator sin squared y end fraction minus fraction numerator cos squared x space cos space y over denominator sin cubed y end fraction

They can be written with a common denominator

fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator negative sin space x space sin squared y over denominator sin cubed y end fraction minus fraction numerator cos squared x space cos space y over denominator sin cubed y end fraction
fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator negative sin space x space sin squared y minus cos squared x space cos space y over denominator sin cubed y end fraction

Put the negative at the front of the entire fraction, to match the form given in the question

fraction numerator d squared y over denominator d x squared end fraction equals negative fraction numerator sin space x space sin squared y plus cos squared x space cos space y over denominator sin cubed y end fraction

Last updated:

You've read 0 of your 5 free study guides this week

Sign up now. It’s free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Jamie Wood

Author: Jamie Wood

Expertise: Maths

Jamie graduated in 2014 from the University of Bristol with a degree in Electronic and Communications Engineering. He has worked as a teacher for 8 years, in secondary schools and in further education; teaching GCSE and A Level. He is passionate about helping students fulfil their potential through easy-to-use resources and high-quality questions and solutions.

Dan Finlay

Author: Dan Finlay

Expertise: Maths Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.