Critical Points of Implicit Relations (College Board AP® Calculus AB)

Revision Note

Jamie Wood

Expertise

Maths

Critical points of implicit relations

Do implicit equations have critical points?

  • Equations defined implicitly can have critical points

  • Critical points are defined in the same way as they are for any other function

    • A critical point occurs where the derivative is equal to zero

    • or where the derivative does not exist

  • The applications of first and second derivatives to classify the nature of points on a graph can be extended to implicit functions

    • These properties are summarized in the table below

Type of point

First derivative

Second derivative

Local minimum

Zero

Positive or zero

Local maximum

Zero

Negative or zero

Point of inflection (critical)

Zero

Zero

Point of inflection (non-critical)

Non-zero

Zero

  • Remember that second derivative equal to zero is not enough for a point to be a point of inflection

    • The second derivative must change sign at the point as well

How can I find points on an implicitly-defined curve where the tangent is horizontal or vertical?

  • The tangent line to an implicitly-defined curve will be horizontal at a point on the curve where fraction numerator d y over denominator d x end fraction equals 0

  • The tangent line to an implicitly-defined curve will be vertical at a point on the curve where fraction numerator d x over denominator d y end fraction equals 0

    • This is the same as a point at which fraction numerator d y over denominator d x end fraction has a denominator equal to zero

      • and a numerator not equal to zero

    • Recall fraction numerator d x over denominator d y end fraction equals fraction numerator 1 over denominator open parentheses fraction numerator d y over denominator d x end fraction close parentheses end fraction

Worked Example

Consider the function y equals f open parentheses x close parentheses whose curve is given by the equation 2 y squared minus 6 equals y space sin space 2 x for y greater than 0.

(a) For 0 less or equal than x less or equal than pi over 2 and y greater than 0, find the coordinates of the point where the tangent to the curve is horizontal.

Answer:

We need to find where the derivative is equal to zero, as the slope of the tangent is zero at that point

Differentiate both sides of the equation with respect to x

Use the product rule for the right hand side, and don't forget to use the chain rule when differentiating y with respect to x

table row cell fraction numerator d over denominator d x end fraction open parentheses 2 y squared minus 6 close parentheses end cell equals cell fraction numerator d over denominator d x end fraction open parentheses y space sin space 2 x close parentheses end cell row cell 4 y times fraction numerator d y over denominator d x end fraction end cell equals cell fraction numerator d y over denominator d x end fraction times sin space 2 x space plus space y times 2 cos space 2 x end cell end table

Rearrange for fraction numerator d y over denominator d x end fraction

table row cell 4 y times fraction numerator d y over denominator d x end fraction minus fraction numerator d y over denominator d x end fraction times sin space 2 x end cell equals cell 2 y space cos space 2 x end cell row cell fraction numerator d y over denominator d x end fraction open parentheses 4 y minus sin space 2 x close parentheses end cell equals cell 2 y space cos space 2 x end cell row cell fraction numerator d y over denominator d x end fraction end cell equals cell fraction numerator 2 y space cos space 2 x over denominator 4 y minus sin space 2 x end fraction end cell end table

Set this equal to zero to find the critical point

fraction numerator 2 y space cos space 2 x over denominator 4 y minus sin space 2 x end fraction equals 0

2 y space cos space 2 x equals 0

We also need to be careful with the denominator, so that the derivative is not undefined (from dividing by zero)

and 4 y minus sin space 2 x not equal to 0

Solve to find x, and use the fact that we know y greater than 0, so 2 y cos space 2 x equals 0 will have the same solutions as cos space 2 x equals 0

table row cell 2 y space cos space 2 x end cell equals 0 row cell cos space 2 x end cell equals 0 row cell 2 x end cell equals cell pi over 2 comma space fraction numerator 3 pi over denominator 2 end fraction comma space... end cell row x equals cell pi over 4 comma space fraction numerator 3 pi over denominator 4 end fraction comma space... end cell end table

We were told in the question that 0 less or equal than x less or equal than pi over 2

x equals pi over 4

Find the y value by substituting into 2 y squared minus 6 equals y space sin space 2 x

table row cell 2 y squared minus 6 end cell equals cell y sin open parentheses 2 times pi over 4 close parentheses end cell row cell 2 y squared minus 6 end cell equals cell y sin open parentheses pi over 2 close parentheses end cell row cell 2 y squared minus 6 end cell equals y row cell 2 y squared minus y minus 6 end cell equals 0 row cell open parentheses 2 y plus 3 close parentheses open parentheses y minus 2 close parentheses end cell equals 0 end table

y greater than 0, so y equals 2

Check this satisfies 4 y minus sin space 2 x not equal to 0

4 open parentheses 2 close parentheses minus sin open parentheses 2 times pi over 4 close parentheses equals 8 minus 1 equals 7 not equal to 0

The point where the tangent to the curve is horizontal is open parentheses pi over 4 comma space 2 close parentheses

(b) Determine whether the curve has a relative minimum, a relative maximum, or neither at the point found in part (a). Justify your answer.

Answer:

We need to check if the second derivative is positive or negative at open parentheses pi over 4 comma space 2 close parentheses

Write down the first derivative, and then differentiate both sides with respect to x

fraction numerator d y over denominator d x end fraction equals fraction numerator 2 y space cos space 2 x over denominator 4 y minus sin space 2 x end fraction
fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator d over denominator d x end fraction open parentheses fraction numerator 2 y space cos space 2 x over denominator 4 y minus sin space 2 x end fraction close parentheses

Use the quotient rule, open parentheses u over v close parentheses to the power of apostrophe equals fraction numerator u to the power of apostrophe v minus u v to the power of apostrophe over denominator v squared end fraction with u equals 2 y space cos space 2 x and v equals 4 y minus sin space 2 x

Differentiating v is relatively straightforward using the chain rule

v equals 4 y minus sin space 2 x
v to the power of apostrophe equals 4 fraction numerator d y over denominator d x end fraction minus 2 cos space 2 x

Differentiating u will require the product rule

Use different variables than u and v so you don't get confused, e.g. p and q

u equals 2 y space cos space 2 x

p equals 2 y q equals cos space 2 x

p to the power of apostrophe equals 2 fraction numerator d y over denominator d x end fraction q to the power of apostrophe equals negative 2 sin space 2 x

u to the power of apostrophe equals p to the power of apostrophe space q space plus space p space q to the power of apostrophe

u to the power of apostrophe equals 2 fraction numerator d y over denominator d x end fraction times cos space 2 x space plus space 2 y times negative 2 sin space 2 x
u to the power of apostrophe equals 2 cos space 2 x times fraction numerator d y over denominator d x end fraction minus 4 y sin space 2 x

Apply the quotient rule, open parentheses u over v close parentheses to the power of apostrophe equals fraction numerator u apostrophe v minus u v apostrophe over denominator v squared end fraction

fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator open parentheses 2 cos 2 x times fraction numerator d y over denominator d x end fraction minus 4 y sin 2 x close parentheses times open parentheses 4 y minus sin 2 x close parentheses minus open parentheses 2 y cos 2 x close parentheses times open parentheses 4 fraction numerator d y over denominator d x end fraction minus 2 cos 2 x close parentheses over denominator open parentheses 4 y minus sin 2 x close parentheses squared end fraction

This is quite a tricky expression, but thankfully we do not need to rearrange it, or even substitute in the expression fraction numerator d y over denominator d x end fraction

We know that the point is open parentheses pi over 4 comma space 2 close parentheses and we know that at this point, fraction numerator d y over denominator d x end fraction equals 0

So we can substitute these values of x, y, and fraction numerator d y over denominator d x end fraction into the expression for fraction numerator d squared y over denominator d x squared end fraction

fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator open parentheses 0 minus 4 open parentheses 2 close parentheses sin open parentheses 2 times pi over 4 close parentheses close parentheses times open parentheses 4 open parentheses 2 close parentheses minus sin open parentheses 2 times pi over 4 close parentheses close parentheses minus open parentheses 2 open parentheses 2 close parentheses cos open parentheses 2 times pi over 4 close parentheses close parentheses times open parentheses 0 minus 2 cos open parentheses 2 times pi over 4 close parentheses close parentheses over denominator open parentheses 4 open parentheses 2 close parentheses minus sin open parentheses 2 times pi over 4 close parentheses close parentheses squared end fraction

fraction numerator d squared y over denominator d x squared end fraction equals fraction numerator open parentheses negative 8 close parentheses times open parentheses 8 minus 1 close parentheses minus open parentheses 0 close parentheses times open parentheses 0 close parentheses over denominator open parentheses 8 minus 1 close parentheses squared end fraction equals negative 56 over 49

Use the sign of the second derivative to classify the nature of the critical point open parentheses pi over 4 comma space 2 close parentheses

At open parentheses pi over 4 comma space 2 close parentheses, the first derivative is zero, and the second derivative is negative.

Therefore it is a relative maximum.

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Jamie Wood

Author: Jamie Wood

Jamie graduated in 2014 from the University of Bristol with a degree in Electronic and Communications Engineering. He has worked as a teacher for 8 years, in secondary schools and in further education; teaching GCSE and A Level. He is passionate about helping students fulfil their potential through easy-to-use resources and high-quality questions and solutions.