Syllabus Edition

First teaching 2023

First exams 2025

|

Gravitational Fields (CIE A Level Physics)

Revision Note

Test yourself
Leander

Author

Leander

Last updated

Defining gravitational field

  • There is a force of attraction between all masses
    • This force is known as the ‘force due to gravity’ or the weight
  • The Earth’s gravitational field is responsible for the weight of all objects on Earth
  • A gravitational field is an example of a field of force and is defined as:

Force per unit mass

  • The direction of the gravitational field is always towards the centre of the mass
    • Gravitational forces cannot be repulsive

Gravitational field strength 

  • The strength of this gravitational field (g) at a point is the force (Fg) per unit mass (m) of an object at that point:

g space equals fraction numerator space F subscript g over denominator m end fraction

  • Where:
    • g = gravitational field strength (N kg-1)
    • Fg = force due to gravity, or weight (N)
    • m = mass (kg)

  • This equation tells us:
    • On planets with a large value of g, the gravitational force per unit mass is greater than on planets with a smaller value of g
    • This means objects will have a larger weight with a larger value of g

Weight of person on Earth and on Jupiter

gravitational field strength, downloadable AS & A Level Physics revision notes

A person’s weight on Jupiter would be so large a human would be unable to fully stand up

Worked example

Calculate the mass of an object with weight 10 N on Earth.

Answer:

Step 1: State the gravitational field strength equation

g space equals fraction numerator space F subscript g over denominator m end fraction

Step 2: Rearrange to make mass the subject

m space equals fraction numerator space F subscript g over denominator g end fraction

Step 3: Substitute in the known values to calculate

m space equals fraction numerator space 10 over denominator 9.81 end fraction space equals space 1.0 space kg

Examiner Tip

There is a big difference between g and G (sometimes referred to as ‘little g’ and ‘big G’ respectively), g is the gravitational field strength and G is Newton’s gravitational constant. Make sure not to use these interchangeably!

Representing gravitational fields

  • The direction and magnitude of a gravitational field is represented by gravitational field lines
    • Gravitational fields can be uniform or non-uniform
  • Radial fields are non-uniform fields
    • The gravitational field strength g decreases with distance from the centre of the object
    • The gravitational field lines around a point mass are directed radially inwards

  • Parallel field lines represent a uniform field
    • The gravitational field strength g is the same throughout the field
    • The gravitational field lines of a uniform field, where the field strength is the same at all points, is represented by equally spaced parallel lines
    • The Earth's gravitational field near the surface is almost uniform; therefore, it can be approximated as uniform

Gravitational field lines for a point mass and for a uniform gravitational field

Gravitational field lines, downloadable AS & A Level Physics revision notes

Gravitational field lines for a point mass are radial and, for a uniform gravitational field, are parallel

Examiner Tip

Always add the arrows on the field lines! Gravitational forces are attractive only. Remember:

  • For a radial field: it is towards the centre of the sphere or point charge
  • For a uniform field: towards the surface of the object e.g. Earth

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Leander

Author: Leander

Expertise: Physics

Leander graduated with First-class honours in Science and Education from Sheffield Hallam University. She won the prestigious Lord Robert Winston Solomon Lipson Prize in recognition of her dedication to science and teaching excellence. After teaching and tutoring both science and maths students, Leander now brings this passion for helping young people reach their potential to her work at SME.