Calculating Magnetic Force on a Moving Charge
- The magnetic force on an isolating moving charge, such an electron, is given by the equation:
F = BQv sinθ
- Where:
- F = force on the charge (N)
- B = magnetic flux density (T)
- Q = charge of the particle (C)
- v = speed of the charge (m s-1)
- θ = angle between charge’s velocity and magnetic field (degrees)
The force on an isolated moving charge is perpendicular to its motion and the magnetic field B
- Equivalent to the force on a wire, if the magnetic field B is perpendicular to the direction of the charge’s velocity, the equation simplifies to:
- According to Fleming’s left hand rule:
- When an electron enters a magnetic field from the left, and if the magnetic field is directed into the page, then the force on it will be directed downwards
- The equation shows:
- If the direction of the electron changes, the magnitude of the force will change too
- The force due to the magnetic field is always perpendicular to the velocity of the electron
- Note: this is equivalent to circular motion
- Fleming’s left-hand rule can be used again to find the direction of the force, magnetic field and velocity
- The key difference is that the second finger representing current I (direction of positive charge) is now the direction of velocity v of the positive charge
The direction of the magnetic force F on positive and negative particles in a B field in and out of the page
Worked example
An electron is moving at 5.3 × 107 m s-1 in a uniform magnetic field of flux density 0.2 T.Calculate the force on the electron when it is moving at 30° to the field, and state the factor it increases by compared to when it travels perpendicular to the field.
Step 1: Write out the known quantities
Speed of the electron, v = 5.3 × 107 m s-1
Charge of an electron, Q = 1.60 × 10-19 C
Magnetic flux density, B = 0.2 T
Angle between electron and magnetic field, θ = 30°
Step 2: Write down the equation for the magnetic force on an isolated particle
F = BQv sinθ
Step 3: Substitute in values, and calculate the force on the electron at 30°
F = (0.2) × (1.60 × 10-19) × (5.3 × 107) × sin(30) = 8.5 × 10-13 N
Step 4: Calculate the electron force when travelling perpendicular to the field
F = BQv = (0.2) × (1.60 × 10-19) × (5.3 × 107) = 1.696 × 10-12 N
Step 5: Calculate the ratio of the perpendicular force to the force at 30°
Therefore, the force on the electron is twice as strong when it is moving perpendicular to the field than when it is moving at 30° to the field
Examiner Tip
Remember not to mix this up with F = BIL!
- F = BIL is for a current carrying conductor
- F = Bqv is for an isolated moving charge (which may be inside a conductor)