Syllabus Edition

First teaching 2020

Last exams 2024

|

Capacitor Discharge Equations (CIE A Level Physics)

Revision Note

Test yourself
Katie M

Author

Katie M

Last updated

The Time Constant

  • The time constant of a capacitor discharging through a resistor is a measure of how long it takes for the capacitor to discharge
  • The definition of the time constant is:

The time taken for the charge of a capacitor to decrease to 0.37 of its original value

  • This is represented by the greek letter tau (tau) and measured in units of seconds (s)
  • The time constant gives an easy way to compare the rate of change of similar quantities eg. charge, current and p.d.
  • The time constant is defined by the equation:

tau = RC

  • Where:
    • tau = time constant (s)
    • R = resistance of the resistor (Ω)
    • C = capacitance of the capacitor (F)

Time Constant Graph, downloadable AS & A Level Physics revision notes

The graph of voltage-time for a discharging capacitor showing the positions of the first three time constants

Worked example

A capacitor of 7 nF is discharged through a resistor of resistance R. The time constant of the discharge is 5.6 × 10-3 s.Calculate the value of R.

Step 1: Write out the known quantities

Capacitance, C = 7 nF = 7 × 10-9 F

Time constant, τ = 5.6 × 10-3 s

Step 2: Write down the time constant equation

τ = RC

Step 3: Rearrange for resistance R

The Time Constant Worked Example equation 1

Step 4: Substitute in values and calculate

The Time Constant Worked Example equation 2

Using the Capacitor Discharge Equation

  • The time constant is used in the exponential decay equations for the current, charge or potential difference (p.d) for a capacitor discharging through a resistor
    • These can be used to determine the amount of current, charge or p.d left after a certain amount of time when a capacitor is discharging

  • The exponential decay of current on a discharging capacitor is defined by the equation:

Using the Capacitor Discharge Equation equation 1

  • Where:
    • I = current (A)
    • I0 = initial current before discharge (A)
    • e = the exponential function
    • t = time (s)
    • RC = resistance (Ω) × capacitance (F) = the time constant τ (s)

  • This equation shows that the faster the time constant τ, the quicker the exponential decay of the current when discharging
  • Also, how big the initial current is affects the rate of discharge
    • If I0 is large, the capacitor will take longer to discharge

  • Note: during capacitor discharge, I0 is always larger than I, this is because the current I will always be decreasing
  • The current at any time is directly proportional to the p.d across the capacitor and the charge across the parallel plates

  • Therefore, this equation also describes the change in p.d and charge on the capacitor:

Using the Capacitor Discharge Equation equation 2

  • Where:
    • Q = charge on the capacitor plates (C)
    • Q0 = initial charge on the capacitor plates (C)

Using the Capacitor Discharge Equation equation 3

  • Where:
    • V = p.d across the capacitor (C)
    • V0 = initial p.d across the capacitor (C)

The Exponential Function e

  • The symbol e represents the exponential constant, a number which is approximately equal to e = 2.718...
  • On a calculator it is shown by the button ex
  • The inverse function of ex is ln(y), known as the natural logarithmic function
    • This is because, if ex = y, then x = ln (y)

  • The 0.37 in the definition of the time constant arises as a result of the exponential constant, the true definition is:

Using the Capacitor Discharge Equation definition equation 4

Using the Capacitor Discharge Equation equation 5

Worked example

The initial current through a circuit with a capacitor of 620 μF is 0.6 A. The capacitor is connected across the terminals of a 450 Ω resistor.Calculate the time taken for the current to fall to 0.4 A.

Step 1: Write out the known quantities

Initial current before discharge, I0 = 0.6 A

Current, I = 0.4 A

Resistance, R = 450 Ω

Capacitance, C = 620 μF = 620 × 10-6 F

Step 2: Write down the equation for the exponential decay of current

Using the Capacitor Discharge Equation equation 1

Step 3: Calculate the time constant

τ = RC

τ = 450 × (620 × 10-6) = 0.279 s

Step 4: Substitute into the current equation

Using the Capacitor Discharge Equation Worked Example equation 3

Step 5: Rearrange for the time t

Using the Capacitor Discharge Equation Worked Example equation 4

The exponential can be removed by taking the natural log of both sides:

Using the Capacitor Discharge Equation Worked Example equation 5

Using the Capacitor Discharge Equation Worked Example equation 6

Examiner Tip

Make sure you’re confident in rearranging equations with natural logs (ln) and the exponential function (e). To refresh your knowledge of this, have a look at the AS Maths revision notes on Exponentials & Logarithms

You've read 0 of your 10 free revision notes

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Katie M

Author: Katie M

Expertise: Physics

Katie has always been passionate about the sciences, and completed a degree in Astrophysics at Sheffield University. She decided that she wanted to inspire other young people, so moved to Bristol to complete a PGCE in Secondary Science. She particularly loves creating fun and absorbing materials to help students achieve their exam potential.